237 lines
8.8 KiB
Python
237 lines
8.8 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
UI/UX Pro Max Core - BM25 search engine for UI/UX style guides
|
|
"""
|
|
|
|
import csv
|
|
import re
|
|
from pathlib import Path
|
|
from math import log
|
|
from collections import defaultdict
|
|
|
|
# ============ CONFIGURATION ============
|
|
DATA_DIR = Path(__file__).parent.parent / "data"
|
|
MAX_RESULTS = 3
|
|
|
|
CSV_CONFIG = {
|
|
"style": {
|
|
"file": "styles.csv",
|
|
"search_cols": ["Style Category", "Keywords", "Best For", "Type"],
|
|
"output_cols": ["Style Category", "Type", "Keywords", "Primary Colors", "Effects & Animation", "Best For", "Performance", "Accessibility", "Framework Compatibility", "Complexity"]
|
|
},
|
|
"prompt": {
|
|
"file": "prompts.csv",
|
|
"search_cols": ["Style Category", "AI Prompt Keywords (Copy-Paste Ready)", "CSS/Technical Keywords"],
|
|
"output_cols": ["Style Category", "AI Prompt Keywords (Copy-Paste Ready)", "CSS/Technical Keywords", "Implementation Checklist"]
|
|
},
|
|
"color": {
|
|
"file": "colors.csv",
|
|
"search_cols": ["Product Type", "Keywords", "Notes"],
|
|
"output_cols": ["Product Type", "Keywords", "Primary (Hex)", "Secondary (Hex)", "CTA (Hex)", "Background (Hex)", "Text (Hex)", "Border (Hex)", "Notes"]
|
|
},
|
|
"chart": {
|
|
"file": "charts.csv",
|
|
"search_cols": ["Data Type", "Keywords", "Best Chart Type", "Accessibility Notes"],
|
|
"output_cols": ["Data Type", "Keywords", "Best Chart Type", "Secondary Options", "Color Guidance", "Accessibility Notes", "Library Recommendation", "Interactive Level"]
|
|
},
|
|
"landing": {
|
|
"file": "landing.csv",
|
|
"search_cols": ["Pattern Name", "Keywords", "Conversion Optimization", "Section Order"],
|
|
"output_cols": ["Pattern Name", "Keywords", "Section Order", "Primary CTA Placement", "Color Strategy", "Conversion Optimization"]
|
|
},
|
|
"product": {
|
|
"file": "products.csv",
|
|
"search_cols": ["Product Type", "Keywords", "Primary Style Recommendation", "Key Considerations"],
|
|
"output_cols": ["Product Type", "Keywords", "Primary Style Recommendation", "Secondary Styles", "Landing Page Pattern", "Dashboard Style (if applicable)", "Color Palette Focus"]
|
|
},
|
|
"ux": {
|
|
"file": "ux-guidelines.csv",
|
|
"search_cols": ["Category", "Issue", "Description", "Platform"],
|
|
"output_cols": ["Category", "Issue", "Platform", "Description", "Do", "Don't", "Code Example Good", "Code Example Bad", "Severity"]
|
|
},
|
|
"typography": {
|
|
"file": "typography.csv",
|
|
"search_cols": ["Font Pairing Name", "Category", "Mood/Style Keywords", "Best For", "Heading Font", "Body Font"],
|
|
"output_cols": ["Font Pairing Name", "Category", "Heading Font", "Body Font", "Mood/Style Keywords", "Best For", "Google Fonts URL", "CSS Import", "Tailwind Config", "Notes"]
|
|
}
|
|
}
|
|
|
|
STACK_CONFIG = {
|
|
"html-tailwind": {"file": "stacks/html-tailwind.csv"},
|
|
"react": {"file": "stacks/react.csv"},
|
|
"nextjs": {"file": "stacks/nextjs.csv"},
|
|
"vue": {"file": "stacks/vue.csv"},
|
|
"svelte": {"file": "stacks/svelte.csv"},
|
|
"swiftui": {"file": "stacks/swiftui.csv"},
|
|
"react-native": {"file": "stacks/react-native.csv"},
|
|
"flutter": {"file": "stacks/flutter.csv"}
|
|
}
|
|
|
|
# Common columns for all stacks
|
|
_STACK_COLS = {
|
|
"search_cols": ["Category", "Guideline", "Description", "Do", "Don't"],
|
|
"output_cols": ["Category", "Guideline", "Description", "Do", "Don't", "Code Good", "Code Bad", "Severity", "Docs URL"]
|
|
}
|
|
|
|
AVAILABLE_STACKS = list(STACK_CONFIG.keys())
|
|
|
|
|
|
# ============ BM25 IMPLEMENTATION ============
|
|
class BM25:
|
|
"""BM25 ranking algorithm for text search"""
|
|
|
|
def __init__(self, k1=1.5, b=0.75):
|
|
self.k1 = k1
|
|
self.b = b
|
|
self.corpus = []
|
|
self.doc_lengths = []
|
|
self.avgdl = 0
|
|
self.idf = {}
|
|
self.doc_freqs = defaultdict(int)
|
|
self.N = 0
|
|
|
|
def tokenize(self, text):
|
|
"""Lowercase, split, remove punctuation, filter short words"""
|
|
text = re.sub(r'[^\w\s]', ' ', str(text).lower())
|
|
return [w for w in text.split() if len(w) > 2]
|
|
|
|
def fit(self, documents):
|
|
"""Build BM25 index from documents"""
|
|
self.corpus = [self.tokenize(doc) for doc in documents]
|
|
self.N = len(self.corpus)
|
|
if self.N == 0:
|
|
return
|
|
self.doc_lengths = [len(doc) for doc in self.corpus]
|
|
self.avgdl = sum(self.doc_lengths) / self.N
|
|
|
|
for doc in self.corpus:
|
|
seen = set()
|
|
for word in doc:
|
|
if word not in seen:
|
|
self.doc_freqs[word] += 1
|
|
seen.add(word)
|
|
|
|
for word, freq in self.doc_freqs.items():
|
|
self.idf[word] = log((self.N - freq + 0.5) / (freq + 0.5) + 1)
|
|
|
|
def score(self, query):
|
|
"""Score all documents against query"""
|
|
query_tokens = self.tokenize(query)
|
|
scores = []
|
|
|
|
for idx, doc in enumerate(self.corpus):
|
|
score = 0
|
|
doc_len = self.doc_lengths[idx]
|
|
term_freqs = defaultdict(int)
|
|
for word in doc:
|
|
term_freqs[word] += 1
|
|
|
|
for token in query_tokens:
|
|
if token in self.idf:
|
|
tf = term_freqs[token]
|
|
idf = self.idf[token]
|
|
numerator = tf * (self.k1 + 1)
|
|
denominator = tf + self.k1 * (1 - self.b + self.b * doc_len / self.avgdl)
|
|
score += idf * numerator / denominator
|
|
|
|
scores.append((idx, score))
|
|
|
|
return sorted(scores, key=lambda x: x[1], reverse=True)
|
|
|
|
|
|
# ============ SEARCH FUNCTIONS ============
|
|
def _load_csv(filepath):
|
|
"""Load CSV and return list of dicts"""
|
|
with open(filepath, 'r', encoding='utf-8') as f:
|
|
return list(csv.DictReader(f))
|
|
|
|
|
|
def _search_csv(filepath, search_cols, output_cols, query, max_results):
|
|
"""Core search function using BM25"""
|
|
if not filepath.exists():
|
|
return []
|
|
|
|
data = _load_csv(filepath)
|
|
|
|
# Build documents from search columns
|
|
documents = [" ".join(str(row.get(col, "")) for col in search_cols) for row in data]
|
|
|
|
# BM25 search
|
|
bm25 = BM25()
|
|
bm25.fit(documents)
|
|
ranked = bm25.score(query)
|
|
|
|
# Get top results with score > 0
|
|
results = []
|
|
for idx, score in ranked[:max_results]:
|
|
if score > 0:
|
|
row = data[idx]
|
|
results.append({col: row.get(col, "") for col in output_cols if col in row})
|
|
|
|
return results
|
|
|
|
|
|
def detect_domain(query):
|
|
"""Auto-detect the most relevant domain from query"""
|
|
query_lower = query.lower()
|
|
|
|
domain_keywords = {
|
|
"color": ["color", "palette", "hex", "#", "rgb"],
|
|
"chart": ["chart", "graph", "visualization", "trend", "bar", "pie", "scatter", "heatmap", "funnel"],
|
|
"landing": ["landing", "page", "cta", "conversion", "hero", "testimonial", "pricing", "section"],
|
|
"product": ["saas", "ecommerce", "e-commerce", "fintech", "healthcare", "gaming", "portfolio", "crypto", "dashboard"],
|
|
"prompt": ["prompt", "css", "implementation", "variable", "checklist", "tailwind"],
|
|
"style": ["style", "design", "ui", "minimalism", "glassmorphism", "neumorphism", "brutalism", "dark mode", "flat", "aurora"],
|
|
"ux": ["ux", "usability", "accessibility", "wcag", "touch", "scroll", "animation", "keyboard", "navigation", "mobile"],
|
|
"typography": ["font", "typography", "heading", "serif", "sans"]
|
|
}
|
|
|
|
scores = {domain: sum(1 for kw in keywords if kw in query_lower) for domain, keywords in domain_keywords.items()}
|
|
best = max(scores, key=scores.get)
|
|
return best if scores[best] > 0 else "style"
|
|
|
|
|
|
def search(query, domain=None, max_results=MAX_RESULTS):
|
|
"""Main search function with auto-domain detection"""
|
|
if domain is None:
|
|
domain = detect_domain(query)
|
|
|
|
config = CSV_CONFIG.get(domain, CSV_CONFIG["style"])
|
|
filepath = DATA_DIR / config["file"]
|
|
|
|
if not filepath.exists():
|
|
return {"error": f"File not found: {filepath}", "domain": domain}
|
|
|
|
results = _search_csv(filepath, config["search_cols"], config["output_cols"], query, max_results)
|
|
|
|
return {
|
|
"domain": domain,
|
|
"query": query,
|
|
"file": config["file"],
|
|
"count": len(results),
|
|
"results": results
|
|
}
|
|
|
|
|
|
def search_stack(query, stack, max_results=MAX_RESULTS):
|
|
"""Search stack-specific guidelines"""
|
|
if stack not in STACK_CONFIG:
|
|
return {"error": f"Unknown stack: {stack}. Available: {', '.join(AVAILABLE_STACKS)}"}
|
|
|
|
filepath = DATA_DIR / STACK_CONFIG[stack]["file"]
|
|
|
|
if not filepath.exists():
|
|
return {"error": f"Stack file not found: {filepath}", "stack": stack}
|
|
|
|
results = _search_csv(filepath, _STACK_COLS["search_cols"], _STACK_COLS["output_cols"], query, max_results)
|
|
|
|
return {
|
|
"domain": "stack",
|
|
"stack": stack,
|
|
"query": query,
|
|
"file": STACK_CONFIG[stack]["file"],
|
|
"count": len(results),
|
|
"results": results
|
|
}
|