# -*- coding: utf-8 -*- # Copyright © 2007-2009 Chris Jones # Copyright © 2008, 2010 Francesco Fumanti # Copyright © 2012 Gerd Kohlberger # Copyright © 2011-2016 marmuta # # This file is part of Onboard. # # Onboard is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # Onboard is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see . from __future__ import division, print_function, unicode_literals import sys import os import time import re import colorsys import gettext import subprocess from math import pi, sin, cos, sqrt, log from contextlib import contextmanager import logging from functools import reduce from gi.repository import GLib _logger = logging.getLogger("utils") # keycodes class KeyCode: Return = 36 KP_Enter = 104 C = 54 class Modifiers: # 1 2 4 8 16 32 64 128 SHIFT, CAPS, CTRL, ALT, NUMLK, MOD3, SUPER, ALTGR = \ (1<>> parse_key_combination(["TAB"], ["TAB"]) [('TAB', 0)] >>> parse_key_combination(["LALT", "TAB"], ["TAB"]) [('TAB', 8)] >>> parse_key_combination(["LALT", "LFSH", "TAB"], ["TAB"]) [('TAB', 9)] >>> parse_key_combination(["LWIN", "RTSH", "LFSH", "RALT", "LALT", "RCTL", "LCTL", "CAPS", "NMLK", "TAB"], ["TAB"]) [('TAB', 223)] # modifier groups >>> parse_key_combination(["CTRL", "SHIFT", "TAB"], ["TAB"]) [('TAB', 5)] # regex >>> parse_key_combination(["F\d+"], ["TAB", "F1", "F2", "F3", "F9"]) [('F1', 0), ('F2', 0), ('F3', 0), ('F9', 0)] """ modifiers = combo[:-1] key_pattern = combo[-1] # find modifier mask mod_mask = parse_modifier_strings(modifiers) if mod_mask is None: return None # match regex key id with all available ids results = [] pattern = re.compile(key_pattern) for key_id in avaliable_key_ids: match = pattern.match(key_id) if match and match.group() == key_id: results.append((key_id, mod_mask)) return results def parse_modifier_strings(modifiers): """ Build modifier mask from modifier strings. """ mod_mask = 0 for modifier in modifiers: m = modDic.get(modifier) if not m is None: mod_mask |= m[1] else: group = modGroups.get(modifier) if not group is None: for mod in group: mod_mask |= modDic[mod][1] else: _logger.warning("unrecognized modifier '{}'; try one of {}" \ .format(modifier, ",".join(m[0] for m in modList))) mod_mask = None break return mod_mask def run_script(script): a =__import__(script) a.run() def toprettyxml(domdoc): ugly_xml = domdoc.toprettyxml(indent=' ') # Join lines with text elements with their tag lines pattern = re.compile('>\n\s+([^<>\s].*?)\n\s+\g<1>>> def test(color): ... rgba = hexcolor_to_rgba(color) ... if rgba is None: ... print(repr(rgba)) ... else: ... print(repr([round(c, 2) for c in rgba])) >>> test("#1a2b3c") [0.1, 0.17, 0.24, 1.0] >>> test("#1a2b3c4d") [0.1, 0.17, 0.24, 0.3] >>> test("") None >>> test("1a2b3c") None >>> test("1a2b3c4d") None >>> test("#1a2b3c4dx") None >>> test("#1a2b3cx") None >>> test("#1a2bx") None >>> test("#1aXb3c4d") None """ rgba = None n = len(color) if n == 7 or n == 9: try: rgba = [hexstring_to_float(color[1:3])/255, hexstring_to_float(color[3:5])/255, hexstring_to_float(color[5:7])/255] if n == 9: rgba.append(hexstring_to_float(color[7:9])/255) else: rgba.append(1.0) except ValueError: rgba = None return rgba class dictproperty(object): """ Property implementation for dictionaries """ class _proxy(object): def __init__(self, obj, fget, fset, fdel): self._obj = obj self._fget = fget self._fset = fset self._fdel = fdel def __getitem__(self, key): if self._fget is None: raise TypeError("can't read item") return self._fget(self._obj, key) def __setitem__(self, key, value): if self._fset is None: raise TypeError("can't set item") self._fset(self._obj, key, value) def __delitem__(self, key): if self._fdel is None: raise TypeError("can't delete item") self._fdel(self._obj, key) def __init__(self, fget=None, fset=None, fdel=None, doc=None): self._fget = fget self._fset = fset self._fdel = fdel self.__doc__ = doc def __get__(self, obj, objtype=None): if obj is None: return self return self._proxy(obj, self._fget, self._fset, self._fdel) def unpack_name_value_list(_list, num_values=2, key_type = str): """ Converts a list of strings into a dict of tuples. Sample list: ['LWIN:label:super', ...] ":" in a value must be escaped as "\:" "\" in a value must be escaped as "\\" """ result = {} # Awkward fixed regexes; todo: Allow arbirary number of values if num_values == 1: pattern = re.compile(r"""([^\s:]+) # name : ((?:\\.|[^\\:])*) # first value """, re.VERBOSE) elif num_values == 2: pattern = re.compile(r"""([^\s:]+) # name : ((?:\\.|[^\\:])*) # first value : ((?:\\.|[^\\:])*) # second value """, re.VERBOSE) else: assert(False) # unsupported number of values for text in _list: tuples = pattern.findall(text) if tuples: a = [] for t in tuples[0]: t = t.replace("\\\\", "\\") # unescape backslash t = t.replace("\\:", ":") # unescape separator a.append(t) if key_type == str: item = {a[0] : (a[1:])} elif key_type == int: item = {int(a[0]) : (a[1:])} else: assert(False) result.update(item) return result def pack_name_value_list(tuples, field_sep=":", name_sep=":"): """ Converts a dict of tuples to a string array. It creates one string per dict key, with the key-string separated by and individual tuple elements separated by . """ result = [] for t in list(tuples.items()): text = str(t[0]) sep = name_sep for value in t[1]: value = value.replace("\\", "\\\\") # escape backslash value = value.replace(sep, "\\"+sep) # escape separator text += sep + '%s' % value sep = field_sep result.append(text) return result def merge_tuple_strings(text1, text2): """ Existing entries in text1 will be kept or overwritten by text2. """ tuples1 = unpack_name_value_tuples(text1) tuples2 = unpack_name_value_tuples(text2) for key,values in list(tuples2.items()): tuples1[key] = values return pack_name_value_tuples(tuples1) class Rect: """ Simple rectangle class. Left and top are included, right and bottom excluded. Attributes can be accessed by name or by index, e.g. rect.x or rect[0]. """ attributes = ("x", "y", "w", "h") def __init__(self, x = 0, y = 0, w = 0, h = 0): self.x = x self.y = y self.w = w self.h = h def __len__(self): return 4 def __getitem__(self, index): """ Collection interface for rvalues, unpacking with '*' operator """ return getattr(self, self.attributes[index]) def __setitem__(self, index, value): """ Collection interface for lvalues """ return setattr(self, self.attributes[index], value) def __str__(self): return "Rect(" + \ " ".join("{}={:.1f}".format(a, getattr(self, a)) \ for a in self.attributes) + \ ")" def __repr__(self): return self.__str__() def __eq__(self, other): return self.x == other.x and \ self.y == other.y and \ self.w == other.w and \ self.h == other.h def __ne__(self, other): return self.x != other.x or \ self.y != other.y or \ self.w != other.w or \ self.h != other.h @staticmethod def from_extents(x0, y0, x1, y1): """ New Rect from two points. x0 and y0 are considered inside, x1 and y1 are just outside the Rect. """ return Rect(x0, y0, x1 - x0, y1 - y0) @staticmethod def from_position_size(position, size): """ New Rect from two tuples. """ return Rect(position[0], position[1], size[0], size[1]) @staticmethod def from_points(p0, p1): """ New Rect from two points, left-top and right-botton. The former lies inside, while the latter is considered to be just outside the rect. """ return Rect(p0[0], p0[1], p1[0] - p0[0], p1[1] - p0[1]) def to_extents(self): return self.x, self.y , self.x + self.w, self.y + self.h def to_position_size(self): return (self.x, self.y), (self.w, self.h) def copy(self): return Rect(self.x, self.y, self.w, self.h) def is_empty(self): return self.w <= 0 or self.h <= 0 def get_position(self): return (self.x, self.y) def get_size(self): return (self.w, self.h) def get_center(self): return (self.x + self.w / 2.0, self.y + self.h / 2.0) def top(self): return self.y def left(self): return self.x def right(self): return self.x + self.w def bottom(self): return self.y + self.h def left_top(self): return self.x, self.y def is_point_within(self, point): """ True, if the given point lies inside the rectangle """ if self.x <= point[0] and \ self.x + self.w > point[0] and \ self.y <= point[1] and \ self.y + self.h > point[1]: return True return False def round(self): return Rect(round(self.x), round(self.y), round(self.w), round(self.h)) def int(self): return Rect(int(self.x), int(self.y), int(self.w), int(self.h)) def scale(self, kx, ky = None): if ky == None: ky = kx return Rect(self.x * kx, self.y * ky, self.w * kx, self.h * ky) def offset(self, dx, dy): """ Returns a new Rect displaced by dx and dy. """ return Rect(self.x + dx, self.y + dy, self.w, self.h) def inflate(self, dx, dy = None): """ Returns a new Rect which is larger by dx and dy on all sides. """ if dy is None: dy = dx return Rect(self.x-dx, self.y-dy, self.w+2*dx, self.h+2*dy) def apply_border(self, left, top, right, bottom): """ Returns a new Rect which is larger by l, t, r, b on all sides. """ return Rect(self.x-left, self.y-top, self.w+left+right, self.h+top+bottom) def deflate(self, dx, dy = None): """ Returns a new Rect which is smaller by dx and dy on all sides. """ if dy is None: dy = dx return Rect(self.x+dx, self.y+dy, self.w-2*dx, self.h-2*dy) def grow(self, kx, ky = None): """ Returns a new Rect with its size multiplied by kx, ky. """ if ky is None: ky = kx w = self.w * kx h = self.h * ky return Rect(self.x + (self.w - w) / 2.0, self.y + (self.h - h) / 2.0, w, h) def intersects(self, rect): """ Doctests: >>> Rect(0, 0, 1, 1).intersects(Rect(0, 0, 1, 1)) True >>> Rect(0, 0, 1, 1).intersects(Rect(1, 0, 1, 1)) False >>> Rect(1, 0, 1, 1).intersects(Rect(0, 0, 1, 1)) False >>> Rect(0, 0, 1, 1).intersects(Rect(0, 1, 1, 1)) False >>> Rect(0, 1, 1, 1).intersects(Rect(0, 0, 1, 1)) False """ #return not self.intersection(rect).is_empty() return not (self.x >= rect.x + rect.w or \ self.x + self.w <= rect.x or \ self.y >= rect.y + rect.h or \ self.y + self.h <= rect.y) def intersection(self, rect): x0 = max(self.x, rect.x) y0 = max(self.y, rect.y) x1 = min(self.x + self.w, rect.x + rect.w) y1 = min(self.y + self.h, rect.y + rect.h) if x0 > x1 or y0 > y1: return Rect() else: return Rect(x0, y0, x1 - x0, y1 - y0) def union(self, rect): x0 = min(self.x, rect.x) y0 = min(self.y, rect.y) x1 = max(self.x + self.w, rect.x + rect.w) y1 = max(self.y + self.h, rect.y + rect.h) return Rect(x0, y0, x1 - x0, y1 - y0) def inscribe_with_aspect(self, rect, x_align = 0.5, y_align = 0.5): """ Returns a new Rect with the aspect ratio of self that fits inside the given rectangle. """ if self.is_empty() or rect.is_empty(): return Rect() src_aspect = self.w / float(self.h) dst_aspect = rect.w / float(rect.h) result = rect.copy() if dst_aspect > src_aspect: result.w = rect.h * src_aspect result.x += x_align * (rect.w - result.w) else: result.h = rect.w / src_aspect result.y += y_align * (rect.h - result.h) return result def resize_to_aspect(self, aspect_rect): """ Resize self to the aspect ratio of aspect_rect. """ if self.is_empty() or aspect_rect.is_empty(): return Rect() src_aspect = aspect_rect.w / float(aspect_rect.h) dst_aspect = self.w / float(self.h) result = self.copy() if dst_aspect > src_aspect: result.w = self.h * src_aspect else: result.h = self.w / src_aspect return result def resize_to_aspect_range(self, aspect_rect, aspect_change_range): """ Resize self to get the aspect ratio of aspect_rect, but limited to the given aspect range. """ if self.is_empty() or aspect_rect.is_empty(): return Rect() r = aspect_rect if r.h: a0 = r.w / float(r.h) a0_max = a0 * aspect_change_range[1] a1 = self.w / float(self.h) a = min(a1, a0_max) r = Rect(0, 0, a, 1.0) r = Rect(0, 0, a, 1.0) return self.resize_to_aspect(r) def align_rect(self, rect, x_align = 0.5, y_align = 0.5): """ Aligns the given rect inside of self. x/y_align = 0.5 centers rect. """ x = self.x + (self.w - rect.w) * x_align y = self.y + (self.h - rect.h) * y_align return Rect(x, y, rect.w, rect.h) def align_at_point(self, x, y, x_align = 0.5, y_align = 0.5): """ Aligns the given rect to a point. x/y_align = 0.5 centers rect. """ x = x - self.w * x_align y = y - self.h * y_align return Rect(x, y, self.w, self.h) def subdivide(self, columns, rows, x_spacing = None, y_spacing = None): """ Divide self into columns x rows sub-rectangles """ if y_spacing is None: y_spacing = x_spacing if x_spacing is None: x_spacing = 0 x, y, w, h = self ws = (self.w - (columns - 1) * x_spacing) / float(columns) hs = (self.h - (rows - 1) * y_spacing) / float(rows) rects = [] y = self.y for row in range(rows): x = self.x for column in range(columns): rects.append(Rect(x, y, ws, hs)) x += ws + x_spacing y += hs + y_spacing return rects def brighten(amount, r, g, b, a=0.0): """ Make the given color brighter by amount a [-1.0...1.0] """ h, l, s = colorsys.rgb_to_hls(r, g, b) l += amount if l > 1.0: l = 1.0 if l < 0.0: l = 0.0 return list(colorsys.hls_to_rgb(h, l, s)) + [a] def linint_rgba(k, rgba1, rgba2): """ interpolate between two colors """ linint = lambda k, a, b: a + (b - a) * k return [linint(k, rgba1[0], rgba12[0]), linint(k, rgba1[1], rgba12[1]), linint(k, rgba1[2], rgba12[2]), linint(k, rgba1[3], rgba12[3])] def roundrect_arc(context, rect, r = 15): x0,y0 = rect.x, rect.y x1,y1 = x0 + rect.w, y0 + rect.h # top left context.move_to(x0+r, y0) # top right context.line_to(x1-r,y0) context.arc(x1-r, y0+r, r, -pi/2, 0) # bottom right context.line_to(x1, y1-r) context.arc(x1-r, y1-r, r, 0, pi/2) # bottom left context.line_to(x0+r, y1) context.arc(x0+r, y1-r, r, pi/2, pi) # top left context.line_to(x0, y0+r) context.arc(x0+r, y0+r, r, pi, pi*1.5) context.close_path () def roundrect_curve(context, rect, r_pct = 100): """ Uses B-splines for less even looks than with arcs, but still allows for approximate circles at r_pct = 100. """ x0 = rect.x y0 = rect.y w = rect.w h = rect.h x1 = x0 + w y1 = y0 + h r = min(w, h) * min(r_pct/100.0, 0.5) # full range at 50% k = (r-1) * r_pct/200.0 # position of control points for circular curves line_to = context.line_to curve_to = context.curve_to # top left context.move_to(x0+r, y0) # top right line_to(x1-r,y0) curve_to(x1-k, y0, x1, y0+k, x1, y0+r) # bottom right line_to(x1, y1-r) curve_to(x1, y1-k, x1-k, y1, x1-r, y1) # bottom left line_to(x0+r, y1) curve_to(x0+k, y1, x0, y1-k, x0, y1-r) # top left line_to(x0, y0+r) curve_to(x0, y0+k, x0+k, y0, x0+r, y0) context.close_path () def rounded_polygon(cr, coords, r_pct, chamfer_size): path = polygon_to_rounded_path(coords, r_pct, chamfer_size) rounded_polygon_path_to_cairo_path(cr, path) def polygon_to_rounded_path(coords, r_pct, chamfer_size): """ Doctests: # simple rectangle, chamfer radius 0. >>> coords = [0, 0, 10, 0, 10, 10, 0, 10] >>> polygon_to_rounded_path(coords, 0, 0) # doctest: +NORMALIZE_WHITESPACE [(0.0, 0.0), (10.0, 0.0), (10.0, 0.0, 10.0, 0.0, 10.0, 0.0), (10.0, 10.0), (10.0, 10.0, 10.0, 10.0, 10.0, 10.0), (0.0, 10.0), (0.0, 10.0, 0.0, 10.0, 0.0, 10.0), (0.0, 0.0), (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)] """ path = [] r = chamfer_size * 2.0 * min(r_pct/100.0, 0.5) # full range at 50% n = len(coords) for i in range(0, n, 2): i0 = i i1 = i + 2 if i1 >= n: i1 -= n i2 = i + 4 if i2 >= n: i2 -= n x0 = coords[i0] y0 = coords[i0+1] x1 = coords[i1] y1 = coords[i1+1] x2 = coords[i2] y2 = coords[i2+1] vax = x1 - x0 vay = y1 - y0 la = sqrt(vax*vax + vay*vay) uax = vax / la uay = vay / la vbx = x2 - x1 vby = y2 - y1 lb = sqrt(vbx*vbx + vby*vby) ubx = vbx / lb uby = vby / lb ra = min(r, la * 0.5) # offset of curve begin and end rb = min(r, lb * 0.5) ka = (ra-1) * r_pct/200.0 # offset of control points kb = (rb-1) * r_pct/200.0 if i == 0: x = x0 + ra*uax y = y0 + ra*uay path.append((x, y)) x = x1 - ra*uax y = y1 - ra*uay path.append((x, y)) x = x1 + rb*ubx y = y1 + rb*uby c0x = x1 - ka*uax c0y = y1 - ka*uay c1x = x1 + kb*ubx c1y = y1 + kb*uby path.append((x, y, c0x, c0y, c1x, c1y)) return path def rounded_polygon_path_to_cairo_path(cr, path): if path: cr.move_to(*path[0]) for i in range(1, len(path), 2): p = path[i] cr.line_to(p[0], p[1]) p = path[i+1] cr.curve_to(p[2], p[3], p[4], p[5], p[0], p[1]) cr.close_path() def rounded_path(cr, path, r_pct, chamfer_size): for polygon in path.iter_polygons(): rounded_polygon(cr, polygon, r_pct, chamfer_size) def round_corners(cr, r, x, y, w, h): """ Paint 4 round corners. Currently x, y are ignored and assumed to be 0. """ # top-left cr.curve_to (0, r, 0, 0, r, 0) cr.line_to (0, 0) cr.close_path() cr.fill() # top-right cr.curve_to (w, r, w, 0, w - r, 0) cr.line_to (w, 0) cr.close_path() cr.fill() # bottom-left cr.curve_to (r, h, 0, h, 0, h - r) cr.line_to (0, h) cr.close_path() cr.fill() # bottom-right cr.curve_to (w, h - r, w, h, w - r, h) cr.line_to (w, h) cr.close_path() cr.fill() def gradient_line(rect, alpha): # Find rotated gradient start and end points. # Line end points follow the largest extent of the rotated rectangle. # The gradient reaches across the entire rectangle. x0, y0, w, h = rect.x, rect.y, rect.w, rect.h a = w / 2.0 b = h / 2.0 coords = [(-a, -b), (a, -b), (a, b), (-a, b)] vx = [c[0]*cos(alpha)-c[1]*sin(alpha) for c in coords] dx = max(vx) - min(vx) r = dx / 2.0 return (r * cos(alpha) + x0 + a, r * sin(alpha) + y0 + b, -r * cos(alpha) + x0 + a, -r * sin(alpha) + y0 + b) import cairo def drop_shadow(cr, pattern, bounds, blur_radius = 4.0, offset = (0, 0), alpha=0.06, steps=4): """ Mostly works, but has issues with clipping artefacts for damage rects smaller than the full window rect. """ origin = bounds.get_center() cr.set_source_rgba(0.0, 0.0, 0.0, alpha) for i in range(steps): x = (i if i else 0.5) / float(steps) k = sqrt(abs(log(1-x))) * 0.7 * blur_radius # gaussian #k = i / float(steps) * blur_radius # linear x_scale = (bounds.w + k) / bounds.w y_scale = (bounds.h + k) / bounds.h cr.save() cr.translate(*origin) cr.scale(x_scale, y_scale) cr.translate(-origin[0] + offset[0], -origin[1] + offset[1]) cr.mask(pattern) cr.restore() @contextmanager def timeit(s, out=sys.stdout): import time, gc if out: gc.collect() gc.collect() gc.collect() t = time.time() text = s if s else "timeit" out.write("%-15s " % text) out.flush() yield None out.write("%10.3fms\n" % ((time.time() - t)*1000)) else: yield None class Fade: """ Helper for opacity fading """ @staticmethod def sin_fade(start_time, duration, start_value, target_value): elapsed = time.time() - start_time if duration: lin_progress = min(1.0, elapsed / duration) else: lin_progress = 1.0 return(Fade.sin_int(lin_progress, start_value, target_value), lin_progress >= 1.0) @staticmethod def sin_int(lin_progress, start_value, target_value): sin_progress = (sin(lin_progress * pi - pi / 2.0) + 1.0) / 2.0 return sin_progress * (target_value - start_value) + start_value class TreeItem(object): """ Abstract base class of tree nodes. Base class of nodes in layout- and color scheme tree. """ # id string of the item id = None # parent item in the tree parent = None # child items items = () def set_items(self, items): self.items = items for item in items: item.parent = self def append_item(self, item): if self.items: self.items.append(item) else: self.items = [item] item.parent = self def append_items(self, items): if self.items: self.items += items else: self.items = items for item in items: item.parent = self def get_parent(self): return self.parent def find_ids(self, ids): """ find all items with matching id """ for item in self.iter_items(): if item.id in ids: yield item def find_classes(self, item_classes): """ find all items with matching id """ for item in self.iter_items(): if isinstance(item, item_classes): yield item def iter_items(self): """ Iterates through all items of the tree. """ yield self for item in self.items: for child in item.iter_items(): yield child def iter_depth_first(self): """ Iterates depth first through the tree. """ for item in self.items: for child in item.iter_depth_first(): yield child yield self def iter_to_root(self): item = self while item: yield item item = item.parent class Version(object): """ Simple class to encapsulate a version number """ major = 0 minor = 0 def __init__(self, major, minor = 0): self.major = major self.minor = minor def __str__(self): return self.to_string() @staticmethod def from_string(version): components = version.split(".") major = 0 minor = 0 try: if len(components) >= 1: major = int(components[0]) if len(components) >= 2: minor = int(components[1]) except ValueError: pass return Version(major, minor) def to_string(self): return "{major}.{minor}".format(major=self.major, minor=self.minor) def __eq__(self, other): return self._cmp(other) == 0 def __ne__(self, other): return self._cmp(other) != 0 def __lt__(self, other): return self._cmp(other) < 0 def __le__(self, other): return self._cmp(other) <= 0 def __gt__(self, other): return self._cmp(other) > 0 def __ge__(self, other): return self._cmp(other) >= 0 def _cmp(self, other): if self.major < other.major: return -1 if self.major > other.major: return 1 if self.minor < other.minor: return -1 if self.minor > other.minor: return 1 return 0 class Process: """ Process utilities """ @staticmethod def get_cmdline(pid): """ Returns the command line for process id pid """ cmdline = "" with open("/proc/%s/cmdline" % pid) as f: cmdline = f.read() return cmdline.split("\0") @staticmethod def get_process_name(pid): cmdline = Process.get_cmdline(pid) if cmdline: return os.path.basename(cmdline[0]) return "" @staticmethod def get_launch_process_cmdline(): """ Checks if this process was launched by """ ppid = os.getppid() if ppid: cmdline = Process.get_cmdline(ppid) return cmdline return [] @staticmethod def was_launched_by(process_name): """ Checks if this process was launched by """ cmdline = " ".join(Process.get_launch_process_cmdline()) return process_name in cmdline def exists_in_path(basename): """ Does a file with this basename exist anywhere in PATH's directories? """ for path in os.environ["PATH"].split(os.pathsep): filename = os.path.join(path, basename) if os.path.isfile(filename): return True return False def chmodtree(path, mode = 0o777, only_dirs = False): """ Change permissions of all files of the given directory tree. Raises OSError. """ os.chmod(path, mode) for root, dirs, files in os.walk(path): for d in dirs: os.chmod(os.path.join(root, d), mode) if not only_dirs: for f in files: os.chmod(os.path.join(root, f), mode) def unicode_str(obj, encoding = "utf-8"): """ Safe str() function that always returns an unicode string. Do nothing if the string was already unicode. """ if sys.version_info.major >= 3: # python 3? return str(obj) if type(obj) == unicode: # unicode string? return obj if hasattr(obj, "__unicode__"): # Exception object? return unicode(obj) return str(obj).decode("utf-8") # strings, numbers, ... def open_utf8(filename, mode = "r"): """ Python 2 compatible replacement for builtin open(). Python 3 added the encoding parameter. """ if sys.version_info.major == 2: return open(filename, mode) else: return open(filename, mode=mode, encoding="UTF-8") def permute_mask(mask): """ Return all permutations of the bits in mask. Doctests: >>> permute_mask(1) [0, 1] >>> permute_mask(5) [0, 1, 4, 5] >>> permute_mask(14) [0, 2, 4, 6, 8, 10, 12, 14] """ bit_masks = [bit_mask for bit_mask in (1<>> old_env = os.environ.copy() >>> os.environ["HOME"] = "/home/test_user" # XDG_CONFIG_HOME unavailable >>> os.environ["XDG_CONFIG_HOME"] = "" >>> XDGDirs.get_config_home("onboard/test.dat") '/home/test_user/.config/onboard/test.dat' # XDG_CONFIG_HOME available >>> os.environ["XDG_CONFIG_HOME"] = "/home/test_user/.config_home" >>> XDGDirs.get_config_home("onboard/test.dat") '/home/test_user/.config_home/onboard/test.dat' # XDG_DATA_HOME unavailable >>> os.environ["XDG_DATA_HOME"] = "" >>> XDGDirs.get_data_home("onboard/test.dat") '/home/test_user/.local/share/onboard/test.dat' # XDG_DATA_HOME available >>> os.environ["XDG_DATA_HOME"] = "/home/test_user/.data_home" >>> XDGDirs.get_data_home("onboard/test.dat") '/home/test_user/.data_home/onboard/test.dat' # XDG_CONFIG_DIRS unvailable >>> os.environ["XDG_CONFIG_HOME"] = "" >>> os.environ["XDG_CONFIG_DIRS"] = "" >>> XDGDirs.get_all_config_dirs("onboard/test.dat") ['/home/test_user/.config/onboard/test.dat', '/etc/xdg/onboard/test.dat'] # XDG_CONFIG_DIRS available >>> os.environ["XDG_CONFIG_HOME"] = "" >>> os.environ["XDG_CONFIG_DIRS"] = "/etc/xdg/xdg-ubuntu:/etc/xdg" >>> XDGDirs.get_all_config_dirs("onboard/test.dat") ['/home/test_user/.config/onboard/test.dat', \ '/etc/xdg/xdg-ubuntu/onboard/test.dat', \ '/etc/xdg/onboard/test.dat'] # XDG_DATA_DIRS unvailable >>> os.environ["XDG_DATA_HOME"] = "" >>> os.environ["XDG_DATA_DIRS"] = "" >>> XDGDirs.get_all_data_dirs("onboard/test.dat") ['/home/test_user/.local/share/onboard/test.dat', \ '/usr/local/share/onboard/test.dat', \ '/usr/share/onboard/test.dat'] # XDG_DATA_DIRS available >>> os.environ["XDG_DATA_HOME"] = "" >>> os.environ["XDG_DATA_DIRS"] = "/usr/share/gnome:/usr/local/share/:/usr/share/" >>> XDGDirs.get_all_data_dirs("onboard/test.dat") ['/home/test_user/.local/share/onboard/test.dat', \ '/usr/share/gnome/onboard/test.dat', \ '/usr/local/share/onboard/test.dat', \ '/usr/share/onboard/test.dat'] >>> os.environ = old_env """ @staticmethod def get_config_home(file = None): """ User specific config directory. """ path = os.environ.get("XDG_CONFIG_HOME") if path and not os.path.isabs(path): _logger.warning("XDG_CONFIG_HOME doesn't contain an absolute path," "ignoring.") path = None if not path: path = os.path.join(os.path.expanduser("~"), ".config") if file: path = os.path.join(path, file) return path @staticmethod def get_config_dirs(): """ Config directories ordered by preference. """ paths = [] value = os.environ.get("XDG_CONFIG_DIRS") if not value: value = "/etc/xdg" paths = value.split(":") paths = [p for p in paths if os.path.isabs(p)] return paths @staticmethod def get_all_config_dirs(file = None): paths = [XDGDirs.get_config_home()] + XDGDirs.get_config_dirs() if file: paths = [os.path.join(p, file) for p in paths] return paths @staticmethod def find_config_files(file): """ Find file in all config directories, highest priority first. """ paths = XDGDirs.get_all_config_dirs(file) return [p for p in paths if os.path.isfile(path) and \ os.access(filename, os.R_OK)] @staticmethod def find_config_file(file): """ Find file of highest priority """ paths = XDGDirs.find_config_files(file) if paths: return paths[0] return None @staticmethod def get_data_home(file = None): """ User specific data directory. """ path = os.environ.get("XDG_DATA_HOME") if path and not os.path.isabs(path): _logger.warning("XDG_DATA_HOME doesn't contain an absolute path," "ignoring.") path = None if not path: path = os.path.join(os.path.expanduser("~"), ".local", "share") if file: path = os.path.join(path, file) return path @staticmethod def get_data_dirs(): """ Data directories ordered by preference. """ paths = [] value = os.environ.get("XDG_DATA_DIRS") if not value: value = "/usr/local/share/:/usr/share/" paths = value.split(":") paths = [p for p in paths if os.path.isabs(p)] return paths @staticmethod def get_all_data_dirs(file = None): paths = [XDGDirs.get_data_home()] + XDGDirs.get_data_dirs() if file: paths = [os.path.join(p, file) for p in paths] return paths @staticmethod def find_data_files(file): """ Find file in all data directories, highest priority first. """ paths = XDGDirs.get_all_data_dirs(file) return [p for p in paths if os.path.isfile(path) and \ os.access(filename, os.R_OK)] @staticmethod def find_data_file(file): """ Find file of highest priority """ paths = XDGDirs.find_data_files(file) if paths: return paths[0] return None def assure_user_dir_exists(path): """ If necessary create user XDG directory. Raises OSError. """ exists = os.path.exists(path) if not exists: try: os.makedirs(path, mode = 0o700) exists = True except OSError as ex: _logger.error(_format("failed to create directory '{}': {}", path, unicode_str(ex))) raise ex return exists _tag_pattern = re.compile( """(?: <[\w\-_]+ # tag (?:\s+[\w\-_]+=["'][^"']*["'])* # attributes /?> ) | (?: ) """, re.UNICODE|re.DOTALL|re.VERBOSE) def _iter_markup(markup): """ Iterate over tag and non-tag sections of a markup string. Doctests: # Never yield for empty string >>> list(_iter_markup("")) [] # must return tag- as well as non-tag sections >>> list(_iter_markup("testtest2")) [('', True), ('test', False), ('', True), ('test2', False)] # should recognize tags with attributes >>> list(_iter_markup('')) [('', True)] >>> list(_iter_markup('')) [('', True)] # should recognize tags with end shortcut >>> list(_iter_markup(' ')) [('', True), (' ', False), ('', True)] # must not modify input, i.e. concatenated result must equal input text >>> markup = "asd t est\\n ds te st2 " >>> "".join([text for text, tag in _iter_markup(markup)]) == markup True """ pos = 0 matches = _tag_pattern.finditer(markup) for m in matches: text = markup[pos:m.start()] if text: yield text, False yield m.group(), True pos = m.end() text = markup[pos:] if text: yield text, False def escape_markup(markup, preserve_tags = False): """ Escape strings of uncertain content for use in Gtk markup. If requested, markup tags are skipped and won't be escaped. Doctests: >>> escape_markup("&<>") '&<>' # tags must be escaped when preserve_tags is False >>> escape_markup("&<>") '<big>&<></big>' # tags must not be escaped when preserve_tags is True >>> escape_markup('&><1<3', True) '&><1<3' # whitespace must be preserved >>> escape_markup("test test2& test3", True) 'test test2& test3' """ result = "" for text, is_tag in _iter_markup(markup): if is_tag and preserve_tags: result += text else: try: result += GLib.markup_escape_text(text) except Exception as ex: # private exception gi._glib.GError _logger.error("markup_escape_text failed for " "'{}': {}" \ .format(text, unicode_str(ex))) return result class TermColors(object): """ Singleton class providing ANSI terminal color codes """ # sequence ids BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE, \ BOLD, RESET = range(10) # sequence cache sequences = {} def __new__(cls, *args, **kwargs): """ Singleton magic. """ if not hasattr(cls, "self"): cls.self = object.__new__(cls, *args, **kwargs) cls.self.construct() return cls.self def __init__(self): """ Called multiple times, do not use. """ pass def construct(self): """ Singleton constructor, runs only once. """ def get(self, seq_id): """ Return ANSI character sequence for the given sequence id, e.g. color index. """ seq = self.sequences.get(seq_id) if seq is None: seq = "" if not seq_id is None: if seq_id >= self.BLACK and seq_id <= self.WHITE: seq = self._tput("setaf " + str(seq_id)) elif seq_id == self.BOLD: seq = self._tput("bold") elif seq_id == self.RESET: seq = self._tput("sgr0") self.sequences[seq_id] = seq return seq @staticmethod def _tput(params): try: s = subprocess.check_output(("tput " + params).split()) return s.decode("ASCII") except subprocess.CalledProcessError: return ""