/* * Copyright (c) 2024 Rockchip, Inc. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifdef ENABLE_EIS #include "sample_iio_aiq.h" typedef struct rkiio_sensor_ctx_s { uint64_t ctx_id; } rkiio_sensor_ctx_t; typedef struct rkiio_sensor_handle_buf_s { pthread_mutex_t buf_mutex; bool is_valid; void* buf; } rkiio_sensor_handle_buf_t; typedef struct rkiio_sensor_handle_ctx_s { mems_sensor_type_t sensor_type; RKIIO_DATA_HANDLE handle; uint32_t max_data_num; uint32_t buf_cnt; rkiio_sensor_handle_buf_t* buf_pool; pthread_mutex_t fifo_buf_mutex; RKIIO_FIFO_DATA fifo_data_buf; } rkiio_sensor_handle_t; static pthread_mutex_t g_mutex = PTHREAD_MUTEX_INITIALIZER; static bool g_init_flag = false; static uint32_t g_sensor_cnt = 0; static uint32_t g_handle_cnt = 0; mems_sensor_ctx_t rkiio_aiq_sensor_ctx_create() { pthread_mutex_lock(&g_mutex); g_sensor_cnt++; if (!g_init_flag) { rkiio_sys_init(); rkiio_timestamp_type_set_all(RKIIO_TIMESTAMP_MONOTONIC); } g_init_flag = true; pthread_mutex_unlock(&g_mutex); rkiio_sensor_ctx_t* ctx = (rkiio_sensor_ctx_t*)malloc(sizeof(rkiio_sensor_ctx_t)); memset(ctx, 0, sizeof(rkiio_sensor_ctx_t)); RKADK_LOGP("create ctx done: %p", ctx); return (mems_sensor_ctx_t)ctx; } mems_sensor_return_t rkiio_aiq_sensor_ctx_destroy(mems_sensor_ctx_t ctx) { if (!ctx) { return SENSOR_ERR_NULL_PTR; } rkiio_sensor_ctx_t* rkiio_ctx = (rkiio_sensor_ctx_t*)ctx; free(rkiio_ctx); pthread_mutex_lock(&g_mutex); g_sensor_cnt--; if (!g_sensor_cnt) { rkiio_sys_uninit(); g_init_flag = false; } pthread_mutex_unlock(&g_mutex); RKADK_LOGP("destroy ctx done"); return SENSOR_NO_ERR; } mems_sensor_return_t rkiio_aiq_sensors_list_get(mems_sensor_ctx_t ctx, mems_sensor_type_t sensor_type, mems_sensor_list_t *sensors_list) { if (!g_init_flag) { RKADK_LOGE("No init"); return SENSOR_ERR_FAIL; } if (!sensors_list || !ctx) { RKADK_LOGE("sensors_list or ctx is null"); return SENSOR_ERR_NULL_PTR; } switch (sensor_type) { case SENSOR_GRYO_TYPE: sensors_list->key_list = rkiio_anglvel_dev_list_get(&sensors_list->count); break; case SENSOR_ACCEL_TYPE: sensors_list->key_list = rkiio_accel_dev_list_get(&sensors_list->count); break; case SENSOR_TEMP_TYPE: sensors_list->key_list = rkiio_temp_dev_list_get(&sensors_list->count); break; case SENSOR_ALL_TYPE: sensors_list->key_list = rkiio_all_dev_list_get(&sensors_list->count); break; default: RKADK_LOGE("unknow sensor_type: %d", sensor_type); return SENSOR_ERR_MISMATCH_SENSOR; } if (sensors_list->count) { RKADK_LOGP("get sensor list success, count: %d", sensors_list->count); return SENSOR_NO_ERR; } RKADK_LOGE("mismatch sensor"); return SENSOR_ERR_MISMATCH_SENSOR; } mems_sensor_return_t rkiio_aiq_sensors_list_release(mems_sensor_list_t *sensors_list) { if (!sensors_list) { RKADK_LOGE("sensors_list is null"); return SENSOR_ERR_NULL_PTR; } int32_t ret = rkiio_dev_list_destroy(sensors_list->key_list, sensors_list->count); if (ret) { RKADK_LOGE("rkiio_dev_list_destroy failed[%d]", ret); return SENSOR_ERR_FAIL; } return SENSOR_NO_ERR; } mems_sensor_return_t rkiio_aiq_sensor_cap_get(mems_sensor_ctx_t ctx, mems_sensor_type_t sensor_type, char *sensor_key, mems_sensor_capabilities_t *caps) { if (!g_init_flag) { RKADK_LOGE("No init"); return SENSOR_ERR_FAIL; } if (!ctx) { RKADK_LOGE("ctx is null"); return SENSOR_ERR_NULL_PTR; } memset(caps, 0, sizeof(mems_sensor_capabilities_t)); caps->type = sensor_type; switch (sensor_type) { case SENSOR_GRYO_TYPE: rkiio_sampling_rate_cap_get(sensor_key, RKIIO_SENSOR_ANGLVEL_TYPE, &(caps->sample_rates), &(caps->num_sample_rates)); break; case SENSOR_ACCEL_TYPE: rkiio_sampling_rate_cap_get(sensor_key, RKIIO_SENSOR_ACCEL_TYPE, &(caps->sample_rates), &(caps->num_sample_rates)); break; case SENSOR_TEMP_TYPE: rkiio_sampling_rate_cap_get(sensor_key, RKIIO_SENSOR_TEMP_TYPE, &(caps->sample_rates), &(caps->num_sample_rates)); break; case SENSOR_ALL_TYPE: rkiio_sampling_rate_cap_get(sensor_key, RKIIO_SENSOR_ALL_TYPE, &(caps->sample_rates), &(caps->num_sample_rates)); break; default: RKADK_LOGE("mismatch sensor"); return SENSOR_ERR_MISMATCH_SENSOR; } caps->is_data_valid = true; return SENSOR_NO_ERR; } mems_sensor_return_t rkiio_aiq_sensor_cap_release(mems_sensor_capabilities_t *caps) { if (caps->sample_rates) rkiio_sampling_rate_cap_release(caps->sample_rates); return SENSOR_NO_ERR; } // only support sampling rate mems_sensor_return_t rkiio_aiq_sensor_config_get(mems_sensor_ctx_t ctx, mems_sensor_type_t sensor_type, char *sensor_key, mems_sensor_config_t *cfg) { int32_t ret = 0; if (!g_init_flag) { RKADK_LOGE("No init"); return SENSOR_ERR_FAIL; } if (!cfg || !ctx) { RKADK_LOGE("cfg or ctx is null"); return SENSOR_ERR_NULL_PTR; } if (g_handle_cnt) { RKADK_LOGE("dev busy, g_handle_cnt: %d", g_handle_cnt); return SENSOR_ERR_DEV_BUSY; } memset(cfg, 0, sizeof(mems_sensor_config_t)); switch (sensor_type) { case SENSOR_GRYO_TYPE: ret = rkiio_sampling_rate_get(sensor_key, RKIIO_SENSOR_ANGLVEL_TYPE, &(cfg->sample_rate)); break; case SENSOR_ACCEL_TYPE: ret = rkiio_sampling_rate_get(sensor_key, RKIIO_SENSOR_ACCEL_TYPE, &(cfg->sample_rate)); break; case SENSOR_TEMP_TYPE: ret = rkiio_sampling_rate_get(sensor_key, RKIIO_SENSOR_TEMP_TYPE, &(cfg->sample_rate)); break; case SENSOR_ALL_TYPE: ret = rkiio_sampling_rate_get(sensor_key, RKIIO_SENSOR_ALL_TYPE, &(cfg->sample_rate)); break; default: RKADK_LOGE("mismatch sensor"); return SENSOR_ERR_MISMATCH_SENSOR; } if (ret) { cfg->sample_rate = 0.0f; RKADK_LOGE("rkiio_sampling_rate_get failed[%d]", ret); return SENSOR_ERR_FAIL; } return SENSOR_NO_ERR; } mems_sensor_return_t rkiio_aiq_sensor_config_set(mems_sensor_ctx_t ctx, mems_sensor_type_t sensor_type, char *sensor_key, mems_sensor_config_t cfg) { int32_t ret = 0; if (!g_init_flag) { RKADK_LOGE("No init"); return SENSOR_ERR_FAIL; } if (!ctx) { RKADK_LOGE("cfg or ctx is null"); return SENSOR_ERR_NULL_PTR; } if (g_handle_cnt) { RKADK_LOGE("dev busy, g_handle_cnt: %d", g_handle_cnt); return SENSOR_ERR_DEV_BUSY; } switch (sensor_type) { case SENSOR_GRYO_TYPE: ret = rkiio_sampling_rate_set(sensor_key, RKIIO_SENSOR_ANGLVEL_TYPE, cfg.sample_rate); break; case SENSOR_ACCEL_TYPE: ret = rkiio_sampling_rate_set(sensor_key, RKIIO_SENSOR_ACCEL_TYPE, cfg.sample_rate); break; case SENSOR_TEMP_TYPE: ret = rkiio_sampling_rate_set(sensor_key, RKIIO_SENSOR_TEMP_TYPE, cfg.sample_rate); break; case SENSOR_ALL_TYPE: ret = rkiio_sampling_rate_set(sensor_key, RKIIO_SENSOR_ALL_TYPE, cfg.sample_rate); break; default: RKADK_LOGE("mismatch sensor"); return SENSOR_ERR_MISMATCH_SENSOR; } if (ret) { RKADK_LOGE("rkiio_sampling_rate_set failed[%d]", ret); return SENSOR_ERR_FAIL; } return SENSOR_NO_ERR; } static uint32_t _rkiio_aiq_buf_id_get(void* buf, uint32_t max_data_num) { uint8_t* data = (uint8_t*)buf; uint64_t idx = sizeof(mems_sensor_event_t) * max_data_num; int32_t* reserverd_data = (int32_t*)&(data[idx]); return *reserverd_data; } static void _rkiio_aiq_buf_id_set(void* buf, uint32_t max_data_num, uint32_t id) { uint8_t* data = (uint8_t*)buf; uint64_t idx = sizeof(mems_sensor_event_t) * max_data_num; int32_t* reserverd_data = (int32_t*)&(data[idx]); *reserverd_data = id; } mems_sensor_handle_t rkiio_aiq_sensor_handle_create(mems_sensor_ctx_t ctx, mems_sensor_type_t sensor_type, char *sensor_key, uint32_t max_data_num, uint32_t buf_cnt) { if (!g_init_flag) { RKADK_LOGE("No init"); return NULL; } if (!ctx || !max_data_num || !buf_cnt) { RKADK_LOGE("Invalid parameter, max_data_num: %d, buf_cnt: %d", max_data_num, buf_cnt); return NULL; } rkiio_sensor_handle_t *sensor_handle = (rkiio_sensor_handle_t*)malloc(sizeof(rkiio_sensor_handle_t)); memset(sensor_handle, 0, sizeof(rkiio_sensor_handle_t)); sensor_handle->sensor_type = sensor_type; sensor_handle->buf_cnt = buf_cnt; sensor_handle->handle = rkiio_data_handle_create(sensor_key, 0, max_data_num); uint32_t real_max_data_num = 0; rkiio_data_handle_max_fifo_num_get(sensor_handle->handle, &real_max_data_num); sensor_handle->max_data_num = (max_data_num > real_max_data_num) ? max_data_num : real_max_data_num; pthread_mutex_init(&(sensor_handle->fifo_buf_mutex), NULL); sensor_handle->fifo_data_buf = (RKIIO_FIFO_DATA)malloc(sizeof(rkiio_data_0_t) * sensor_handle->max_data_num); sensor_handle->buf_pool = (rkiio_sensor_handle_buf_t*)malloc(sizeof(rkiio_sensor_handle_buf_t) * buf_cnt); memset(sensor_handle->buf_pool, 0, sizeof(rkiio_sensor_handle_buf_t) * buf_cnt); for (uint32_t i = 0; i < buf_cnt; i++) { pthread_mutex_init(&(sensor_handle->buf_pool[i].buf_mutex), NULL); sensor_handle->buf_pool[i].is_valid = true; sensor_handle->buf_pool[i].buf = (void*)malloc( sizeof(mems_sensor_event_t) * sensor_handle->max_data_num + sizeof(uint32_t)); memset(sensor_handle->buf_pool[i].buf, 0, sizeof(mems_sensor_event_t) * sensor_handle->max_data_num + sizeof(uint32_t)); _rkiio_aiq_buf_id_set(sensor_handle->buf_pool[i].buf, sensor_handle->max_data_num, i); } pthread_mutex_lock(&g_mutex); g_handle_cnt++; pthread_mutex_unlock(&g_mutex); RKADK_LOGP("create handle done, g_handle_cnt: %d", g_handle_cnt); return (mems_sensor_handle_t)sensor_handle; } mems_sensor_return_t rkiio_aiq_sensor_handle_destroy(mems_sensor_handle_t handle) { if (!handle) { return SENSOR_ERR_NULL_PTR; } rkiio_sensor_handle_t* sensor_handle = (rkiio_sensor_handle_t*)handle; pthread_mutex_lock(&(sensor_handle->fifo_buf_mutex)); rkiio_data_handle_destroy(sensor_handle->handle); if (sensor_handle->fifo_data_buf) free(sensor_handle->fifo_data_buf); if (sensor_handle->buf_pool) { for (uint32_t i = 0; i < sensor_handle->buf_cnt; i++) { if (sensor_handle->buf_pool[i].buf) free(sensor_handle->buf_pool[i].buf); } free(sensor_handle->buf_pool); } pthread_mutex_unlock(&(sensor_handle->fifo_buf_mutex)); free(sensor_handle); pthread_mutex_lock(&g_mutex); g_handle_cnt--; pthread_mutex_unlock(&g_mutex); RKADK_LOGP("destroy handle done, g_handle_cnt: %d", g_handle_cnt); return SENSOR_NO_ERR; } static uint32_t _rkiio_aiq_get_vaild_buf(rkiio_sensor_handle_t *handle) { while (1) { for (uint32_t i = 0; i < handle->buf_cnt; i++) { pthread_mutex_lock(&(handle->buf_pool[i].buf_mutex)); // printf("%s: id: %u, valid: %d\n", __FUNCTION__, i, handle->buf_pool[i].is_valid); if (handle->buf_pool[i].is_valid) { handle->buf_pool[i].is_valid = false; pthread_mutex_unlock(&(handle->buf_pool[i].buf_mutex)); return i; } pthread_mutex_unlock(&(handle->buf_pool[i].buf_mutex)); } usleep(100000); } } static mems_sensor_data_t _rkiio_aiq_getData_gyro(rkiio_sensor_handle_t *handle, uint64_t data_num) { rkiio_data_0_t* fifo = (rkiio_data_0_t*)handle->fifo_data_buf; uint32_t valid_id = _rkiio_aiq_get_vaild_buf(handle); mems_sensor_event_t* event = (mems_sensor_event_t*)(handle->buf_pool[valid_id].buf); memset(event, 0, sizeof(mems_sensor_event_t) * data_num); for (uint64_t i = 0; i < data_num; i++) { memcpy(&(event[i].gyro), &(fifo[i].anglvel), sizeof(xyz_data_t)); event[i].timestamp_us = fifo[i].timestamp; event[i].id = fifo[i].id; // printf("%llu:, x: %f, y: %f, z: %f, t: %llu, %llu:, x: %f, y: %f, z: %f, t: %llu\n", // fifo[i].id, fifo[i].anglvel.x, fifo[i].anglvel.y, fifo[i].anglvel.z, // fifo[i].timestamp, event[i].id, event[i].gyro.x, event[i].gyro.y, event[i].gyro.z, // event[i].timestamp_us); } return (mems_sensor_data_t)event; } static mems_sensor_data_t _rkiio_aiq_getData_accel(rkiio_sensor_handle_t *handle, uint64_t data_num) { rkiio_data_0_t* fifo = (rkiio_data_0_t*)handle->fifo_data_buf; uint32_t valid_id = _rkiio_aiq_get_vaild_buf(handle); mems_sensor_event_t* event = (mems_sensor_event_t*)(handle->buf_pool[valid_id].buf); memset(event, 0, sizeof(mems_sensor_event_t) * data_num); for (uint64_t i = 0; i < data_num; i++) { memcpy(&(event[i].accel), &(fifo[i].accel), sizeof(xyz_data_t)); event[i].timestamp_us = fifo[i].timestamp; event[i].id = fifo[i].id; } return (mems_sensor_data_t)event; } static mems_sensor_data_t _rkiio_aiq_getData_temp(rkiio_sensor_handle_t *handle, uint64_t data_num) { rkiio_data_0_t* fifo = (rkiio_data_0_t*)handle->fifo_data_buf; uint32_t valid_id = _rkiio_aiq_get_vaild_buf(handle); mems_sensor_event_t* event = (mems_sensor_event_t*)(handle->buf_pool[valid_id].buf); memset(event, 0, sizeof(mems_sensor_event_t) * data_num); for (uint64_t i = 0; i < data_num; i++) { // temp alter to s32? event[i].temperature = fifo[i].temp; event[i].timestamp_us = fifo[i].timestamp; event[i].id = fifo[i].id; } return (mems_sensor_data_t)event; } static mems_sensor_data_t _rkiio_aiq_getData_all(rkiio_sensor_handle_t *handle, uint64_t data_num) { rkiio_data_0_t* fifo = (rkiio_data_0_t*)handle->fifo_data_buf; uint32_t valid_id = _rkiio_aiq_get_vaild_buf(handle); mems_sensor_event_t* event = (mems_sensor_event_t*)(handle->buf_pool[valid_id].buf); memset(event, 0, sizeof(mems_sensor_event_t) * data_num); for (uint64_t i = 0; i < data_num; i++) { memcpy(&(event[i].all.gyro), &(fifo[i].anglvel), sizeof(xyz_data_t)); memcpy(&(event[i].all.accel), &(fifo[i].accel), sizeof(xyz_data_t)); // temp alter to s32? event[i].all.temperature = fifo[i].temp; event[i].timestamp_us = fifo[i].timestamp; event[i].id = fifo[i].id; } return (mems_sensor_data_t)event; } mems_sensor_data_t rkiio_aiq_getData(mems_sensor_handle_t handle, size_t *num_samples) { int32_t ret = 0; uint64_t data_num = 0; mems_sensor_data_t data = NULL; rkiio_sensor_handle_t *sensor_handle; if (!handle) { RKADK_LOGE("handle is null"); return NULL; } sensor_handle = (rkiio_sensor_handle_t*)handle; pthread_mutex_lock(&(sensor_handle->fifo_buf_mutex)); ret = rkiio_data_get_all(sensor_handle->handle, sensor_handle->fifo_data_buf, &data_num); if (ret || !data_num) { *num_samples = 0; pthread_mutex_unlock(&(sensor_handle->fifo_buf_mutex)); RKADK_LOGE("rkiio_data_get_all failed[%d], data_num[%lld]", ret, data_num); return NULL; } switch (sensor_handle->sensor_type) { case SENSOR_GRYO_TYPE: data = _rkiio_aiq_getData_gyro(sensor_handle, data_num); break; case SENSOR_ACCEL_TYPE: data = _rkiio_aiq_getData_accel(sensor_handle, data_num); break; case SENSOR_TEMP_TYPE: data = _rkiio_aiq_getData_temp(sensor_handle, data_num); break; case SENSOR_ALL_TYPE: data = _rkiio_aiq_getData_all(sensor_handle, data_num); break; default: RKADK_LOGE("unknown sensor_type[%d]", sensor_handle->sensor_type); data = NULL; } *num_samples = data ? (size_t)data_num : 0; pthread_mutex_unlock(&(sensor_handle->fifo_buf_mutex)); return data; } mems_sensor_data_t rkiio_aiq_getLastNSamples(mems_sensor_handle_t handle, size_t num_samples) { int32_t ret = 0; mems_sensor_data_t data = NULL; rkiio_sensor_handle_t *sensor_handle; uint64_t data_num = (uint64_t)num_samples; if (!handle || !num_samples) { RKADK_LOGE("Invalid parameter, num_samples: %d", num_samples); return NULL; } sensor_handle = (rkiio_sensor_handle_t*)handle; if ((uint32_t)num_samples > sensor_handle->max_data_num) { RKADK_LOGE("num_samples[%d] > max_data_num[%d]", num_samples, sensor_handle->max_data_num); return NULL; } pthread_mutex_lock(&(sensor_handle->fifo_buf_mutex)); ret = rkiio_data_read(sensor_handle->handle, sensor_handle->fifo_data_buf, data_num); if (ret) { pthread_mutex_unlock(&(sensor_handle->fifo_buf_mutex)); RKADK_LOGE("rkiio_data_read failed[%d]", ret); return NULL; } switch (sensor_handle->sensor_type) { case SENSOR_GRYO_TYPE: data = _rkiio_aiq_getData_gyro(sensor_handle, data_num); break; case SENSOR_ACCEL_TYPE: data = _rkiio_aiq_getData_accel(sensor_handle, data_num); break; case SENSOR_TEMP_TYPE: data = _rkiio_aiq_getData_temp(sensor_handle, data_num); break; case SENSOR_ALL_TYPE: data = _rkiio_aiq_getData_all(sensor_handle, data_num); break; default: RKADK_LOGE("unknown sensor_type[%d]", sensor_handle->sensor_type); data = NULL; } pthread_mutex_unlock(&(sensor_handle->fifo_buf_mutex)); return data; } mems_sensor_return_t rkiio_aiq_sensor_data_release(mems_sensor_handle_t sensor_handle, mems_sensor_data_t data) { if (!data || !sensor_handle) { RKADK_LOGE("Invalid parameter"); return SENSOR_ERR_NULL_PTR; } rkiio_sensor_handle_t* handle = (rkiio_sensor_handle_t*)sensor_handle; uint32_t idx = _rkiio_aiq_buf_id_get(data, handle->max_data_num); pthread_mutex_lock(&(handle->buf_pool[idx].buf_mutex)); handle->buf_pool[idx].is_valid = true; pthread_mutex_unlock(&(handle->buf_pool[idx].buf_mutex)); return SENSOR_NO_ERR; } #endif