// SPDX-License-Identifier: GPL-2.0 /* * rockchip serdes ar0330 sensor driver * * Copyright (C) 2024 Rockchip Electronics Co., Ltd. * * V1.0X00.0X00 support for rockchip serdes */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "rkser_dev.h" #define DRIVER_VERSION KERNEL_VERSION(1, 0x00, 0x00) #ifndef V4L2_CID_DIGITAL_GAIN #define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN #endif /* non continuous mode */ #define MODE_NONCONTINUOUS 1 /* 74.25Mhz */ #define AR0330_PIXEL_RATE (196000000U) #define AR0330_XVCLK_FREQ 24000000 #define AR0330_LINK_FREQ 268000000U #define CHIP_ID 0x2604 #define AR0330_REG_CHIP_ID 0x3000 #define AR0330_REG_CTRL_MODE 0x301A #define AR0330_MODE_SW_STANDBY 0x0058 #define AR0330_MODE_STREAMING 0x005C #define AR0330_REG_EXPOSURE 0x3012 #define AR0330_EXPOSURE_MIN 4 #define AR0330_EXPOSURE_STEP 1 #define AR0330_VTS_MAX 0x0fff #define AR0330_REG_ANALOG_GAIN 0x3060 #define ANALOG_GAIN_MIN 0x64 #define ANALOG_GAIN_MAX 0x320 #define ANALOG_GAIN_STEP 1 #define ANALOG_GAIN_DEFAULT 0xC8 #define AR0330_REG_VTS 0x300a #define AR0330_REG_ORIENTATION 0x3040 #define AR0330_ORIENTATION_H bit(14) #define AR0330_ORIENTATION_V bit(15) /* I2C Array token */ #define REG_NULL 0xFFFF /* Array token: end */ #define REG_DELAY 0xFFFE /* Array token: delay */ #define AR0330_REG_VALUE_08BIT 1 #define AR0330_REG_VALUE_16BIT 2 #define AR0330_REG_VALUE_24BIT 3 #define PIX_FORMAT MEDIA_BUS_FMT_SGRBG12_1X12 #define AR0330_NAME "ar0330" struct regval { u16 addr; u16 val; }; struct gain_range { u16 range_h; u16 val; }; struct ar0330_mode { u32 width; u32 height; struct v4l2_fract max_fps; u32 hts_def; u32 vts_def; u32 exp_def; const struct regval *reg_list; }; struct ar0330 { struct i2c_client *client; struct regulator *poc_regulator; struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *exposure; struct v4l2_ctrl *anal_gain; struct v4l2_ctrl *digi_gain; struct v4l2_ctrl *hblank; struct v4l2_ctrl *vblank; struct v4l2_ctrl *test_pattern; struct mutex mutex; bool streaming; bool power_on; const struct ar0330_mode *cur_mode; u32 module_index; const char *module_facing; const char *module_name; const char *len_name; u8 cam_i2c_addr_def; u8 cam_i2c_addr_map; serializer_t *serializer; }; #define to_ar0330(sd) container_of(sd, struct ar0330, subdev) /* * Xclk 24Mhz * Pclk 98Mhz * linelength 0x9c0 * framelength 0x51c * grabwindow_width 1920 * grabwindow_height 1080 * max_framerate 30fps * mipi rate 588Mbps 12it */ static const struct regval ar0330_global_regs[] = { //PLL_settings {0x301A, 0x0059}, // Reset Sensor {REG_DELAY, 0x0064}, {0x31AE, 0x0202}, // MIPI 2lane {0x301A, 0x0058}, // Disable Streaming {REG_DELAY, 0x0032}, {0x3064, 0x1802}, {0x3078, 0x0001}, {0x31E0, 0x0003}, //Toggle Flash on Each Frame {0x3046, 0x4038}, // Enable Flash Pin {0x3048, 0x8480}, // Flash Pulse Length {0x31E0, 0x0203}, // OTPM V5 {0x3ED2, 0x0146}, {0x3EDA, 0x88BC}, {0x3EDC, 0xAA63}, {0x305E, 0x00A0}, //PLL_settings 588Mbps 98Mhz //STATE = Master Clock, 98000000 {0x302A, 0x0006}, // VT_PIX_CLK_DIV = 6 {0x302C, 0x0002}, // VT_SYS_CLK_DIV = 2 {0x302E, 0x0002}, // PRE_PLL_CLK_DIV = 2 {0x3030, 0x0031}, // PLL_MULTIPLIER = 49 {0x3036, 0x000C}, // OP_PIX_CLK_DIV = 12 {0x3038, 0x0001}, // OP_SYS_CLK_DIV = 1 {0x31AC, 0x0C0C}, // DATA_FORMAT_BITS #if (MODE_NONCONTINUOUS == 0) //MIPI Port Timing continuous mode {0x31B0, 0x002d}, {0x31B2, 0x0012}, {0x31B4, 0x3b44}, {0x31B6, 0x314d}, {0x31B8, 0x2089}, {0x31BA, 0x0206}, {0x31BC, 0x8005}, {0x31BE, 0x2003}, #else //MIPI Port Timing non-continuous mode {0x31B0, 0x0054}, {0x31B2, 0x002C}, {0x31B4, 0x3b44}, {0x31B6, 0x314d}, {0x31B8, 0x2089}, {0x31BA, 0x0206}, {0x31BC, 0x0007}, // 15bit->0: non-continuous {0x31BE, 0x2003}, #endif /* MODE_NONCONTINUOUS */ //Timing_settings {0x3004, 0x00C6}, // X_ADDR_START = 6 {0x3008, 0x0845}, // X_ADDR_END = 2309 {0x3002, 0x0084}, // Y_ADDR_START = 120 {0x3006, 0x057B}, // Y_ADDR_END = 1415 {0x300A, 0x051c}, // FRAME_LENGTH_LINES = 1308 {0x300C, 0x04E0}, // LINE_LENGTH_PCK = 1248 {0x3012, 0x051b}, // COARSE_INTEGRATION_TIME = 1307 {0x3014, 0x0000}, // FINE_INTEGRATION_TIME = 0 {0x30A2, 0x0001}, // X_ODD_INC = 1 {0x30A6, 0x0001}, // Y_ODD_INC = 1 {0x3040, 0x0000}, // READ_MODE = 0 {0x3042, 0x0000}, // EXTRA_DELAY = 0 {0x30BA, 0x002C}, // DIGITAL_CTRL = 44 {0x3070, 0x0000}, {0x30FE, 0x0080}, // RESERVED_MFR_30FE {0x31E0, 0x0703}, // RESERVED_MFR_31E0 {0x3ECE, 0x08FF}, // RESERVED_MFR_3ECE {0x3ED0, 0xE4F6}, // RESERVED_MFR_3ED0 {0x3ED2, 0x0146}, // RESERVED_MFR_3ED2 {0x3ED4, 0x8F6C}, // RESERVED_MFR_3ED4 {0x3ED6, 0x66CC}, // RESERVED_MFR_3ED6 {0x3ED8, 0x8C42}, // RESERVED_MFR_3ED8 {0x3EDA, 0x889B}, // RESERVED_MFR_3EDA {0x3EDC, 0x8863}, // RESERVED_MFR_3EDC {0x3EDE, 0xAA04}, // RESERVED_MFR_3EDE {0x3EE0, 0x15F0}, // RESERVED_MFR_3EE0 {0x3EE6, 0x008C}, // RESERVED_MFR_3EE6 {0x3EE8, 0x2024}, // RESERVED_MFR_3EE8 {0x3EEA, 0xFF1F}, // RESERVED_MFR_3EEA {0x3F06, 0x046A}, // RESERVED_MFR_3F06 {0x3EDA, 0x88BC}, // RESERVED_MFR_3EDA {0x3EDC, 0xAA63}, // RESERVED_MFR_3EDC {REG_NULL, 0x00}, }; /* * Xclk 24Mhz * Pclk 98Mhz * linelength 0x9c0 * framelength 0x51c * grabwindow_width 1920 * grabwindow_height 1080 * max_framerate 30fps * mipi_datarate per lane 588Mbps */ static const struct regval ar0330_1920x1080_regs[] = { {REG_NULL, 0x00} }; #define HTS_DEF 2496 #define VTS_DEF 1308 #define MAX_FPS 30 static const struct ar0330_mode supported_modes[] = { { .width = 1920, .height = 1080, .max_fps = { .numerator = 10000, .denominator = 300000, }, .exp_def = 0x018c, .hts_def = HTS_DEF, .vts_def = VTS_DEF, .reg_list = ar0330_1920x1080_regs, } }; static const s64 link_freq_menu_items[] = { AR0330_LINK_FREQ }; static const char * const ar0330_test_pattern_menu[] = { "Disabled", "Vertical Color Bar Type 1", "Vertical Color Bar Type 2", "Vertical Color Bar Type 3", "Vertical Color Bar Type 4" }; /* sensor register write */ static int ar0330_write(struct i2c_client *client, u16 reg, u16 val) { struct i2c_msg msg; u8 buf[4]; int ret; dev_dbg(&client->dev, "write reg(0x%x val:0x%x)!\n", reg, val); buf[0] = reg >> 8; buf[1] = reg & 0xFF; buf[2] = val >> 8 & 0xff; buf[3] = val & 0xff; msg.addr = client->addr; msg.flags = client->flags; msg.buf = buf; msg.len = sizeof(buf); ret = i2c_transfer(client->adapter, &msg, 1); if (ret >= 0) return 0; dev_err(&client->dev, "ar0330 write reg(0x%x val:0x%x) failed !\n", reg, val); return ret; } static int ar0330_write_array(struct i2c_client *client, const struct regval *regs) { int i, delay_ms, ret = 0; i = 0; while (regs[i].addr != REG_NULL) { if (regs[i].addr == REG_DELAY) { delay_ms = regs[i].val; dev_info(&client->dev, "delay(%d) ms !\n", delay_ms); usleep_range(1000 * delay_ms, 1000 * delay_ms + 100); i++; continue; } ret = ar0330_write(client, regs[i].addr, regs[i].val); if (ret) { dev_err(&client->dev, "%s failed !\n", __func__); break; } i++; } return ret; } /* Read registers up to 4 at a time */ /* sensor register read */ static int ar0330_read_reg(struct i2c_client *client, u16 reg, u16 *val) { struct i2c_msg msg[2]; u8 buf[2]; int ret; buf[0] = (reg >> 8) & 0xff; buf[1] = reg & 0xFF; msg[0].addr = client->addr; msg[0].flags = client->flags; msg[0].buf = buf; msg[0].len = sizeof(buf); msg[1].addr = client->addr; msg[1].flags = client->flags | I2C_M_RD; msg[1].buf = buf; msg[1].len = 2; ret = i2c_transfer(client->adapter, msg, 2); if (ret >= 0) { *val = (buf[0] << 8) | buf[1]; return 0; } dev_err(&client->dev, "ar0330 read reg:0x%x failed !\n", reg); return ret; } static int ar0330_check_sensor_id(struct ar0330 *ar0330, struct i2c_client *client) { struct device *dev = &ar0330->client->dev; u16 id = 0; int ret; ret = ar0330_read_reg(client, AR0330_REG_CHIP_ID, &id); if (id != CHIP_ID) { dev_err(dev, "Unexpected sensor id(%x), ret(%d)\n", id, ret); return -ENODEV; } dev_info(dev, "Detected AR0330 sensor\n"); return 0; } static int ar0330_get_reso_dist(const struct ar0330_mode *mode, struct v4l2_mbus_framefmt *framefmt) { return abs(mode->width - framefmt->width) + abs(mode->height - framefmt->height); } static const struct ar0330_mode * ar0330_find_best_fit(struct v4l2_subdev_format *fmt) { struct v4l2_mbus_framefmt *framefmt = &fmt->format; int dist; int cur_best_fit = 0; int cur_best_fit_dist = -1; u32 i; for (i = 0; i < ARRAY_SIZE(supported_modes); i++) { dist = ar0330_get_reso_dist(&supported_modes[i], framefmt); if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) { cur_best_fit_dist = dist; cur_best_fit = i; } } return &supported_modes[cur_best_fit]; } #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE static int ar0330_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) #else static int ar0330_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmt) #endif { struct ar0330 *ar0330 = to_ar0330(sd); const struct ar0330_mode *mode; s64 h_blank, vblank_def; mutex_lock(&ar0330->mutex); mode = ar0330_find_best_fit(fmt); fmt->format.code = PIX_FORMAT; fmt->format.width = mode->width; fmt->format.height = mode->height; fmt->format.field = V4L2_FIELD_NONE; if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format; #else *v4l2_subdev_get_try_format(sd, cfg, fmt->pad) = fmt->format; #endif #else mutex_unlock(&ar0330->mutex); return -ENOTTY; #endif } else { ar0330->cur_mode = mode; h_blank = mode->hts_def - mode->width; __v4l2_ctrl_modify_range(ar0330->hblank, h_blank, h_blank, 1, h_blank); vblank_def = mode->vts_def - mode->height; __v4l2_ctrl_modify_range(ar0330->vblank, vblank_def, AR0330_VTS_MAX - mode->height, 1, vblank_def); } mutex_unlock(&ar0330->mutex); return 0; } #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE static int ar0330_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) #else static int ar0330_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *fmt) #endif { struct ar0330 *ar0330 = to_ar0330(sd); const struct ar0330_mode *mode = ar0330->cur_mode; mutex_lock(&ar0330->mutex); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad); #else fmt->format = *v4l2_subdev_get_try_format(sd, cfg, fmt->pad); #endif #else mutex_unlock(&ar0330->mutex); return -ENOTTY; #endif } else { fmt->format.width = mode->width; fmt->format.height = mode->height; fmt->format.code = PIX_FORMAT; fmt->format.field = V4L2_FIELD_NONE; } mutex_unlock(&ar0330->mutex); return 0; } #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE static int ar0330_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) #else static int ar0330_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) #endif { if (code->index != 0) return -EINVAL; code->code = PIX_FORMAT; return 0; } #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE static int ar0330_enum_frame_sizes(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) #else static int ar0330_enum_frame_sizes(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_size_enum *fse) #endif { if (fse->index >= ARRAY_SIZE(supported_modes)) return -EINVAL; if (fse->code != PIX_FORMAT) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = supported_modes[fse->index].width; fse->max_height = supported_modes[fse->index].height; fse->min_height = supported_modes[fse->index].height; return 0; } static int ar0330_enable_test_pattern(struct ar0330 *ar0330, u32 pattern) { return 0; } static void ar0330_get_module_inf(struct ar0330 *ar0330, struct rkmodule_inf *inf) { memset(inf, 0, sizeof(*inf)); strscpy(inf->base.sensor, AR0330_NAME, sizeof(inf->base.sensor)); strscpy(inf->base.module, ar0330->module_name, sizeof(inf->base.module)); strscpy(inf->base.lens, ar0330->len_name, sizeof(inf->base.lens)); } static long ar0330_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg) { struct ar0330 *ar0330 = to_ar0330(sd); long ret = 0; switch (cmd) { case RKMODULE_GET_MODULE_INFO: ar0330_get_module_inf(ar0330, (struct rkmodule_inf *)arg); break; default: ret = -ENOIOCTLCMD; break; } return ret; } #ifdef CONFIG_COMPAT static long ar0330_compat_ioctl32(struct v4l2_subdev *sd, unsigned int cmd, unsigned long arg) { void __user *up = compat_ptr(arg); struct rkmodule_inf *inf; long ret; switch (cmd) { case RKMODULE_GET_MODULE_INFO: inf = kzalloc(sizeof(*inf), GFP_KERNEL); if (!inf) { ret = -ENOMEM; return ret; } ret = ar0330_ioctl(sd, cmd, inf); if (!ret) { ret = copy_to_user(up, inf, sizeof(*inf)); if (ret) ret = -EFAULT; } kfree(inf); break; default: ret = -ENOIOCTLCMD; break; } return ret; } #endif static int __ar0330_start_stream(struct ar0330 *ar0330) { serializer_t *serializer = ar0330->serializer; struct i2c_client *client = ar0330->client; struct device *dev = &client->dev; int ret = 0; dev_info(dev, "ar0330 device start stream\n"); if (serializer == NULL) { dev_err(dev, "%s: serializer error\n", __func__); return -EINVAL; } if (serializer->ser_ops == NULL) { dev_err(dev, "%s: serializer ser_ops error\n", __func__); return -EINVAL; } ret = serializer->ser_ops->ser_module_init(serializer); if (ret) { dev_err(dev, "%s: serializer module_init error\n", __func__); return ret; } ret = ar0330_check_sensor_id(ar0330, ar0330->client); if (ret) return ret; ret = ar0330_write_array(ar0330->client, ar0330_global_regs); if (ret) { dev_err(dev, "could not set global init registers\n"); return ret; } ret = ar0330_write_array(ar0330->client, ar0330->cur_mode->reg_list); if (ret) return ret; /* In case these controls are set before streaming */ ret = __v4l2_ctrl_handler_setup(&ar0330->ctrl_handler); if (ret) return ret; ret = ar0330_write(ar0330->client, AR0330_REG_CTRL_MODE, AR0330_MODE_STREAMING); if (ret) { dev_err(dev, "%s: ar0330 start stream error\n", __func__); return ret; } return 0; } static int __ar0330_stop_stream(struct ar0330 *ar0330) { serializer_t *serializer = ar0330->serializer; struct i2c_client *client = ar0330->client; struct device *dev = &client->dev; int ret = 0; dev_info(dev, "ar0330 device stop stream\n"); ret = ar0330_write(ar0330->client, AR0330_REG_CTRL_MODE, AR0330_MODE_SW_STANDBY); if (ret) { dev_err(dev, "%s: ar0330 stop stream error\n", __func__); return ret; } if (serializer == NULL) { dev_err(dev, "%s: serializer error\n", __func__); return -EINVAL; } if (serializer->ser_ops == NULL) { dev_err(dev, "%s: serializer ser_ops error\n", __func__); return -EINVAL; } ret = serializer->ser_ops->ser_module_deinit(serializer); if (ret) { dev_err(dev, "%s: serializer module_deinit error\n", __func__); return ret; } return 0; } static int ar0330_s_stream(struct v4l2_subdev *sd, int on) { struct ar0330 *ar0330 = to_ar0330(sd); struct i2c_client *client = ar0330->client; int ret = 0; mutex_lock(&ar0330->mutex); on = !!on; if (on == ar0330->streaming) goto unlock_and_return; if (on) { #if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE ret = pm_runtime_resume_and_get(&client->dev); #else ret = pm_runtime_get_sync(&client->dev); #endif if (ret < 0) { pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } ret = __ar0330_start_stream(ar0330); if (ret) { v4l2_err(sd, "start stream failed while write regs\n"); pm_runtime_put(&client->dev); goto unlock_and_return; } } else { __ar0330_stop_stream(ar0330); pm_runtime_put(&client->dev); } ar0330->streaming = on; unlock_and_return: mutex_unlock(&ar0330->mutex); return ret; } static int ar0330_g_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_frame_interval *fi) { struct ar0330 *ar0330 = to_ar0330(sd); const struct ar0330_mode *mode = ar0330->cur_mode; fi->interval = mode->max_fps; return 0; } static int ar0330_s_power(struct v4l2_subdev *sd, int on) { struct ar0330 *ar0330 = to_ar0330(sd); struct i2c_client *client = ar0330->client; int ret = 0; mutex_lock(&ar0330->mutex); /* If the power state is not modified - no work to do. */ if (ar0330->power_on == !!on) goto unlock_and_return; if (on) { #if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE ret = pm_runtime_resume_and_get(&client->dev); #else ret = pm_runtime_get_sync(&client->dev); #endif if (ret < 0) { pm_runtime_put_noidle(&client->dev); goto unlock_and_return; } ar0330->power_on = true; } else { pm_runtime_put(&client->dev); ar0330->power_on = false; } unlock_and_return: mutex_unlock(&ar0330->mutex); return ret; } /* Calculate the delay in us by clock rate and clock cycles */ static inline u32 ar0330_cal_delay(u32 cycles) { return DIV_ROUND_UP(cycles, AR0330_XVCLK_FREQ / 1000 / 1000); } static int __ar0330_power_on(struct ar0330 *ar0330) { struct device *dev = &ar0330->client->dev; u32 delay_us; int ret = 0; dev_info(dev, "ar0330 device power on\n"); ret = regulator_enable(ar0330->poc_regulator); if (ret < 0) { dev_err(dev, "Unable to turn PoC regulator on\n"); return ret; } /* 8192 cycles prior to first SCCB transaction */ delay_us = ar0330_cal_delay(92000); usleep_range(delay_us, delay_us * 2); return 0; } static void __ar0330_power_off(struct ar0330 *ar0330) { struct device *dev = &ar0330->client->dev; int ret = 0; dev_info(dev, "ar0330 device power off\n"); ret = regulator_disable(ar0330->poc_regulator); if (ret < 0) dev_warn(dev, "Unable to turn PoC regulator off\n"); } static int ar0330_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ar0330 *ar0330 = to_ar0330(sd); return __ar0330_power_on(ar0330); } static int ar0330_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ar0330 *ar0330 = to_ar0330(sd); __ar0330_power_off(ar0330); return 0; } #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static int ar0330_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct ar0330 *ar0330 = to_ar0330(sd); #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE struct v4l2_mbus_framefmt *try_fmt = v4l2_subdev_get_try_format(sd, fh->state, 0); #else struct v4l2_mbus_framefmt *try_fmt = v4l2_subdev_get_try_format(sd, fh->pad, 0); #endif const struct ar0330_mode *def_mode = &supported_modes[0]; mutex_lock(&ar0330->mutex); /* Initialize try_fmt */ try_fmt->width = def_mode->width; try_fmt->height = def_mode->height; try_fmt->code = PIX_FORMAT; try_fmt->field = V4L2_FIELD_NONE; mutex_unlock(&ar0330->mutex); /* No crop or compose */ return 0; } #endif #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE static int ar0330_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) #else static int ar0330_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_frame_interval_enum *fie) #endif { if (fie->index >= ARRAY_SIZE(supported_modes)) return -EINVAL; if (fie->code != PIX_FORMAT) return -EINVAL; fie->width = supported_modes[fie->index].width; fie->height = supported_modes[fie->index].height; fie->interval = supported_modes[fie->index].max_fps; return 0; } static const struct dev_pm_ops ar0330_pm_ops = { SET_RUNTIME_PM_OPS(ar0330_runtime_suspend, ar0330_runtime_resume, NULL) }; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API static const struct v4l2_subdev_internal_ops ar0330_internal_ops = { .open = ar0330_open, }; #endif static const struct v4l2_subdev_core_ops ar0330_core_ops = { .s_power = ar0330_s_power, .ioctl = ar0330_ioctl, #ifdef CONFIG_COMPAT .compat_ioctl32 = ar0330_compat_ioctl32, #endif }; static const struct v4l2_subdev_video_ops ar0330_video_ops = { .s_stream = ar0330_s_stream, .g_frame_interval = ar0330_g_frame_interval, }; static const struct v4l2_subdev_pad_ops ar0330_pad_ops = { .enum_mbus_code = ar0330_enum_mbus_code, .enum_frame_size = ar0330_enum_frame_sizes, .enum_frame_interval = ar0330_enum_frame_interval, .get_fmt = ar0330_get_fmt, .set_fmt = ar0330_set_fmt, }; static const struct v4l2_subdev_ops ar0330_subdev_ops = { .core = &ar0330_core_ops, .video = &ar0330_video_ops, .pad = &ar0330_pad_ops, }; static struct gain_range gain_level[] = { {101, 0x00}, {104, 0x01}, {108, 0x02}, {111, 0x03}, {115, 0x04}, {120, 0x05}, {124, 0x06}, {129, 0x07}, {134, 0x08}, {140, 0x09}, {146, 0x0a}, {153, 0x0b}, {161, 0x0c}, {169, 0x0d}, {179, 0x0e}, {189, 0x0f}, {201, 0x10}, {214, 0x12}, {230, 0x14}, {247, 0x16}, {268, 0x18}, {292, 0x1a}, {321, 0x1c}, {357, 0x1e}, {401, 0x20}, {457, 0x24}, {533, 0x28}, {641, 0x2c}, {801, 0x30} }; static int ar0330_set_gain(struct ar0330 *ar0330, int gain) { int ret = 0, i = 0; int num_gains = ARRAY_SIZE(gain_level); u16 again = 0; for (i = 0; i < num_gains; i++) { if (gain_level[i].range_h >= gain) { again = gain_level[i].val; break; } } ret = ar0330_write(ar0330->client, AR0330_REG_ANALOG_GAIN, again); return ret; } static int ar0330_set_ctrl(struct v4l2_ctrl *ctrl) { struct ar0330 *ar0330 = container_of(ctrl->handler, struct ar0330, ctrl_handler); struct i2c_client *client = ar0330->client; int ret = 0; if (pm_runtime_get(&client->dev) <= 0) return 0; // i2c can't be accessed before serdes link ok if (rkser_is_inited(ar0330->serializer) == false) { dev_warn(&client->dev, "%s ctrl id = 0x%x before serializer init\n", __func__, ctrl->id); return 0; } switch (ctrl->id) { case V4L2_CID_EXPOSURE: ret = ar0330_write(ar0330->client, AR0330_REG_EXPOSURE, ctrl->val); break; case V4L2_CID_ANALOGUE_GAIN: ret = ar0330_set_gain(ar0330, ctrl->val); break; case V4L2_CID_VBLANK: ret = ar0330_write(ar0330->client, AR0330_REG_VTS, ctrl->val + ar0330->cur_mode->height); break; case V4L2_CID_TEST_PATTERN: ret = ar0330_enable_test_pattern(ar0330, ctrl->val); break; default: dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n", __func__, ctrl->id, ctrl->val); break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_ctrl_ops ar0330_ctrl_ops = { .s_ctrl = ar0330_set_ctrl, }; static int ar0330_initialize_controls(struct ar0330 *ar0330) { const struct ar0330_mode *mode; struct v4l2_ctrl_handler *handler; struct v4l2_ctrl *ctrl; s64 exposure_max, vblank_def; u32 h_blank; int ret; handler = &ar0330->ctrl_handler; mode = ar0330->cur_mode; ret = v4l2_ctrl_handler_init(handler, 7); if (ret) return ret; handler->lock = &ar0330->mutex; ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ, 0, 0, link_freq_menu_items); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE, 0, AR0330_PIXEL_RATE, 1, AR0330_PIXEL_RATE); h_blank = mode->hts_def - mode->width; ar0330->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); if (ar0330->hblank) ar0330->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; vblank_def = mode->vts_def - mode->height; ar0330->vblank = v4l2_ctrl_new_std(handler, &ar0330_ctrl_ops, V4L2_CID_VBLANK, vblank_def, AR0330_VTS_MAX - mode->height, 1, vblank_def); exposure_max = mode->vts_def - 4; ar0330->exposure = v4l2_ctrl_new_std(handler, &ar0330_ctrl_ops, V4L2_CID_EXPOSURE, AR0330_EXPOSURE_MIN, exposure_max, AR0330_EXPOSURE_STEP, mode->exp_def); ar0330->anal_gain = v4l2_ctrl_new_std(handler, &ar0330_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, ANALOG_GAIN_MIN, ANALOG_GAIN_MAX, ANALOG_GAIN_STEP, ANALOG_GAIN_DEFAULT); ar0330->test_pattern = v4l2_ctrl_new_std_menu_items(handler, &ar0330_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(ar0330_test_pattern_menu) - 1, 0, 0, ar0330_test_pattern_menu); if (handler->error) { ret = handler->error; dev_err(&ar0330->client->dev, "Failed to init controls(%d)\n", ret); goto err_free_handler; } ar0330->subdev.ctrl_handler = handler; return 0; err_free_handler: v4l2_ctrl_handler_free(handler); return ret; } static int ar0330_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct device_node *node = dev->of_node; struct ar0330 *ar0330 = NULL; struct v4l2_subdev *sd = NULL; serializer_t *serializer = NULL; char facing[2]; int ret; dev_info(dev, "driver version: %02x.%02x.%02x", DRIVER_VERSION >> 16, (DRIVER_VERSION & 0xff00) >> 8, DRIVER_VERSION & 0x00ff); dev_info(dev, "Sensor MCLK = %d, MIPI Clock = %d", AR0330_XVCLK_FREQ, AR0330_LINK_FREQ); ar0330 = devm_kzalloc(dev, sizeof(*ar0330), GFP_KERNEL); if (!ar0330) return -ENOMEM; ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX, &ar0330->module_index); ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING, &ar0330->module_facing); ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME, &ar0330->module_name); ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME, &ar0330->len_name); if (ret) { dev_err(dev, "could not get module information!\n"); return -EINVAL; } ar0330->client = client; ar0330->cam_i2c_addr_map = client->addr; ar0330->cur_mode = &supported_modes[0]; // poc regulator ar0330->poc_regulator = devm_regulator_get(dev, "poc"); if (IS_ERR(ar0330->poc_regulator)) { if (PTR_ERR(ar0330->poc_regulator) != -EPROBE_DEFER) dev_err(dev, "Unable to get PoC regulator (%ld)\n", PTR_ERR(ar0330->poc_regulator)); else dev_err(dev, "Get PoC regulator deferred\n"); ret = PTR_ERR(ar0330->poc_regulator); return ret; } mutex_init(&ar0330->mutex); sd = &ar0330->subdev; v4l2_i2c_subdev_init(sd, client, &ar0330_subdev_ops); ret = ar0330_initialize_controls(ar0330); if (ret) goto err_destroy_mutex; ret = __ar0330_power_on(ar0330); if (ret) goto err_free_handler; #ifdef CONFIG_VIDEO_V4L2_SUBDEV_API sd->internal_ops = &ar0330_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; #endif #if defined(CONFIG_MEDIA_CONTROLLER) ar0330->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sd->entity, 1, &ar0330->pad); if (ret < 0) goto err_power_off; #endif memset(facing, 0, sizeof(facing)); if (strcmp(ar0330->module_facing, "back") == 0) facing[0] = 'b'; else facing[0] = 'f'; snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s", ar0330->module_index, facing, AR0330_NAME, dev_name(sd->dev)); #if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE ret = v4l2_async_register_subdev_sensor(sd); #else ret = v4l2_async_register_subdev_sensor_common(sd); #endif if (ret) { dev_err(dev, "v4l2 async register subdev failed\n"); goto err_clean_entity; } /* serializer bind */ serializer = rkcam_get_ser_by_phandle(dev); if (serializer != NULL) { dev_info(dev, "serializer bind success\n"); ar0330->serializer = serializer; } else { dev_err(dev, "serializer bind fail\n"); ar0330->serializer = NULL; } pm_runtime_set_active(dev); pm_runtime_enable(dev); pm_runtime_idle(dev); return 0; err_clean_entity: #if defined(CONFIG_MEDIA_CONTROLLER) media_entity_cleanup(&sd->entity); #endif err_power_off: __ar0330_power_off(ar0330); err_free_handler: v4l2_ctrl_handler_free(&ar0330->ctrl_handler); err_destroy_mutex: mutex_destroy(&ar0330->mutex); return ret; } #if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE static int ar0330_remove(struct i2c_client *client) #else static void ar0330_remove(struct i2c_client *client) #endif { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ar0330 *ar0330 = to_ar0330(sd); v4l2_async_unregister_subdev(sd); #if defined(CONFIG_MEDIA_CONTROLLER) media_entity_cleanup(&sd->entity); #endif v4l2_ctrl_handler_free(&ar0330->ctrl_handler); mutex_destroy(&ar0330->mutex); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) __ar0330_power_off(ar0330); pm_runtime_set_suspended(&client->dev); #if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE return 0; #endif } static const struct of_device_id ar0330_of_match[] = { { .compatible = "rockchip,Aptina,ar0330" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ar0330_of_match); static struct i2c_driver ar0330_i2c_driver = { .driver = { .name = "rkcam-ar0330", .pm = &ar0330_pm_ops, .of_match_table = of_match_ptr(ar0330_of_match), }, .probe = &ar0330_probe, .remove = &ar0330_remove, }; module_i2c_driver(ar0330_i2c_driver); MODULE_AUTHOR("Cai Wenzhong "); MODULE_DESCRIPTION("Rockchip Remote Aptina AR0330 Sensor Driver"); MODULE_LICENSE("GPL");