linuxOS_AP06/kernel/drivers/media/i2c/rkserdes/remote/ar0330.c
2025-06-03 12:28:32 +08:00

1238 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* rockchip serdes ar0330 sensor driver
*
* Copyright (C) 2024 Rockchip Electronics Co., Ltd.
*
* V1.0X00.0X00 support for rockchip serdes
*/
#include <linux/version.h>
#include <linux/device.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/compat.h>
#include <linux/of_graph.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>
#include <linux/rk-camera-module.h>
#include <media/media-entity.h>
#include <media/v4l2-async.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-subdev.h>
#include <media/v4l2-fwnode.h>
#include "rkser_dev.h"
#define DRIVER_VERSION KERNEL_VERSION(1, 0x00, 0x00)
#ifndef V4L2_CID_DIGITAL_GAIN
#define V4L2_CID_DIGITAL_GAIN V4L2_CID_GAIN
#endif
/* non continuous mode */
#define MODE_NONCONTINUOUS 1
/* 74.25Mhz */
#define AR0330_PIXEL_RATE (196000000U)
#define AR0330_XVCLK_FREQ 24000000
#define AR0330_LINK_FREQ 268000000U
#define CHIP_ID 0x2604
#define AR0330_REG_CHIP_ID 0x3000
#define AR0330_REG_CTRL_MODE 0x301A
#define AR0330_MODE_SW_STANDBY 0x0058
#define AR0330_MODE_STREAMING 0x005C
#define AR0330_REG_EXPOSURE 0x3012
#define AR0330_EXPOSURE_MIN 4
#define AR0330_EXPOSURE_STEP 1
#define AR0330_VTS_MAX 0x0fff
#define AR0330_REG_ANALOG_GAIN 0x3060
#define ANALOG_GAIN_MIN 0x64
#define ANALOG_GAIN_MAX 0x320
#define ANALOG_GAIN_STEP 1
#define ANALOG_GAIN_DEFAULT 0xC8
#define AR0330_REG_VTS 0x300a
#define AR0330_REG_ORIENTATION 0x3040
#define AR0330_ORIENTATION_H bit(14)
#define AR0330_ORIENTATION_V bit(15)
/* I2C Array token */
#define REG_NULL 0xFFFF /* Array token: end */
#define REG_DELAY 0xFFFE /* Array token: delay */
#define AR0330_REG_VALUE_08BIT 1
#define AR0330_REG_VALUE_16BIT 2
#define AR0330_REG_VALUE_24BIT 3
#define PIX_FORMAT MEDIA_BUS_FMT_SGRBG12_1X12
#define AR0330_NAME "ar0330"
struct regval {
u16 addr;
u16 val;
};
struct gain_range {
u16 range_h;
u16 val;
};
struct ar0330_mode {
u32 width;
u32 height;
struct v4l2_fract max_fps;
u32 hts_def;
u32 vts_def;
u32 exp_def;
const struct regval *reg_list;
};
struct ar0330 {
struct i2c_client *client;
struct regulator *poc_regulator;
struct v4l2_subdev subdev;
struct media_pad pad;
struct v4l2_ctrl_handler ctrl_handler;
struct v4l2_ctrl *exposure;
struct v4l2_ctrl *anal_gain;
struct v4l2_ctrl *digi_gain;
struct v4l2_ctrl *hblank;
struct v4l2_ctrl *vblank;
struct v4l2_ctrl *test_pattern;
struct mutex mutex;
bool streaming;
bool power_on;
const struct ar0330_mode *cur_mode;
u32 module_index;
const char *module_facing;
const char *module_name;
const char *len_name;
u8 cam_i2c_addr_def;
u8 cam_i2c_addr_map;
serializer_t *serializer;
};
#define to_ar0330(sd) container_of(sd, struct ar0330, subdev)
/*
* Xclk 24Mhz
* Pclk 98Mhz
* linelength 0x9c0
* framelength 0x51c
* grabwindow_width 1920
* grabwindow_height 1080
* max_framerate 30fps
* mipi rate 588Mbps 12it
*/
static const struct regval ar0330_global_regs[] = {
//PLL_settings
{0x301A, 0x0059}, // Reset Sensor
{REG_DELAY, 0x0064},
{0x31AE, 0x0202}, // MIPI 2lane
{0x301A, 0x0058}, // Disable Streaming
{REG_DELAY, 0x0032},
{0x3064, 0x1802},
{0x3078, 0x0001},
{0x31E0, 0x0003},
//Toggle Flash on Each Frame
{0x3046, 0x4038}, // Enable Flash Pin
{0x3048, 0x8480}, // Flash Pulse Length
{0x31E0, 0x0203}, // OTPM V5
{0x3ED2, 0x0146},
{0x3EDA, 0x88BC},
{0x3EDC, 0xAA63},
{0x305E, 0x00A0},
//PLL_settings 588Mbps 98Mhz
//STATE = Master Clock, 98000000
{0x302A, 0x0006}, // VT_PIX_CLK_DIV = 6
{0x302C, 0x0002}, // VT_SYS_CLK_DIV = 2
{0x302E, 0x0002}, // PRE_PLL_CLK_DIV = 2
{0x3030, 0x0031}, // PLL_MULTIPLIER = 49
{0x3036, 0x000C}, // OP_PIX_CLK_DIV = 12
{0x3038, 0x0001}, // OP_SYS_CLK_DIV = 1
{0x31AC, 0x0C0C}, // DATA_FORMAT_BITS
#if (MODE_NONCONTINUOUS == 0)
//MIPI Port Timing continuous mode
{0x31B0, 0x002d},
{0x31B2, 0x0012},
{0x31B4, 0x3b44},
{0x31B6, 0x314d},
{0x31B8, 0x2089},
{0x31BA, 0x0206},
{0x31BC, 0x8005},
{0x31BE, 0x2003},
#else
//MIPI Port Timing non-continuous mode
{0x31B0, 0x0054},
{0x31B2, 0x002C},
{0x31B4, 0x3b44},
{0x31B6, 0x314d},
{0x31B8, 0x2089},
{0x31BA, 0x0206},
{0x31BC, 0x0007}, // 15bit->0: non-continuous
{0x31BE, 0x2003},
#endif /* MODE_NONCONTINUOUS */
//Timing_settings
{0x3004, 0x00C6}, // X_ADDR_START = 6
{0x3008, 0x0845}, // X_ADDR_END = 2309
{0x3002, 0x0084}, // Y_ADDR_START = 120
{0x3006, 0x057B}, // Y_ADDR_END = 1415
{0x300A, 0x051c}, // FRAME_LENGTH_LINES = 1308
{0x300C, 0x04E0}, // LINE_LENGTH_PCK = 1248
{0x3012, 0x051b}, // COARSE_INTEGRATION_TIME = 1307
{0x3014, 0x0000}, // FINE_INTEGRATION_TIME = 0
{0x30A2, 0x0001}, // X_ODD_INC = 1
{0x30A6, 0x0001}, // Y_ODD_INC = 1
{0x3040, 0x0000}, // READ_MODE = 0
{0x3042, 0x0000}, // EXTRA_DELAY = 0
{0x30BA, 0x002C}, // DIGITAL_CTRL = 44
{0x3070, 0x0000},
{0x30FE, 0x0080}, // RESERVED_MFR_30FE
{0x31E0, 0x0703}, // RESERVED_MFR_31E0
{0x3ECE, 0x08FF}, // RESERVED_MFR_3ECE
{0x3ED0, 0xE4F6}, // RESERVED_MFR_3ED0
{0x3ED2, 0x0146}, // RESERVED_MFR_3ED2
{0x3ED4, 0x8F6C}, // RESERVED_MFR_3ED4
{0x3ED6, 0x66CC}, // RESERVED_MFR_3ED6
{0x3ED8, 0x8C42}, // RESERVED_MFR_3ED8
{0x3EDA, 0x889B}, // RESERVED_MFR_3EDA
{0x3EDC, 0x8863}, // RESERVED_MFR_3EDC
{0x3EDE, 0xAA04}, // RESERVED_MFR_3EDE
{0x3EE0, 0x15F0}, // RESERVED_MFR_3EE0
{0x3EE6, 0x008C}, // RESERVED_MFR_3EE6
{0x3EE8, 0x2024}, // RESERVED_MFR_3EE8
{0x3EEA, 0xFF1F}, // RESERVED_MFR_3EEA
{0x3F06, 0x046A}, // RESERVED_MFR_3F06
{0x3EDA, 0x88BC}, // RESERVED_MFR_3EDA
{0x3EDC, 0xAA63}, // RESERVED_MFR_3EDC
{REG_NULL, 0x00},
};
/*
* Xclk 24Mhz
* Pclk 98Mhz
* linelength 0x9c0
* framelength 0x51c
* grabwindow_width 1920
* grabwindow_height 1080
* max_framerate 30fps
* mipi_datarate per lane 588Mbps
*/
static const struct regval ar0330_1920x1080_regs[] = {
{REG_NULL, 0x00}
};
#define HTS_DEF 2496
#define VTS_DEF 1308
#define MAX_FPS 30
static const struct ar0330_mode supported_modes[] = {
{
.width = 1920,
.height = 1080,
.max_fps = {
.numerator = 10000,
.denominator = 300000,
},
.exp_def = 0x018c,
.hts_def = HTS_DEF,
.vts_def = VTS_DEF,
.reg_list = ar0330_1920x1080_regs,
}
};
static const s64 link_freq_menu_items[] = {
AR0330_LINK_FREQ
};
static const char * const ar0330_test_pattern_menu[] = {
"Disabled",
"Vertical Color Bar Type 1",
"Vertical Color Bar Type 2",
"Vertical Color Bar Type 3",
"Vertical Color Bar Type 4"
};
/* sensor register write */
static int ar0330_write(struct i2c_client *client, u16 reg, u16 val)
{
struct i2c_msg msg;
u8 buf[4];
int ret;
dev_dbg(&client->dev, "write reg(0x%x val:0x%x)!\n", reg, val);
buf[0] = reg >> 8;
buf[1] = reg & 0xFF;
buf[2] = val >> 8 & 0xff;
buf[3] = val & 0xff;
msg.addr = client->addr;
msg.flags = client->flags;
msg.buf = buf;
msg.len = sizeof(buf);
ret = i2c_transfer(client->adapter, &msg, 1);
if (ret >= 0)
return 0;
dev_err(&client->dev,
"ar0330 write reg(0x%x val:0x%x) failed !\n", reg, val);
return ret;
}
static int ar0330_write_array(struct i2c_client *client,
const struct regval *regs)
{
int i, delay_ms, ret = 0;
i = 0;
while (regs[i].addr != REG_NULL) {
if (regs[i].addr == REG_DELAY) {
delay_ms = regs[i].val;
dev_info(&client->dev, "delay(%d) ms !\n", delay_ms);
usleep_range(1000 * delay_ms, 1000 * delay_ms + 100);
i++;
continue;
}
ret = ar0330_write(client, regs[i].addr, regs[i].val);
if (ret) {
dev_err(&client->dev, "%s failed !\n", __func__);
break;
}
i++;
}
return ret;
}
/* Read registers up to 4 at a time */
/* sensor register read */
static int ar0330_read_reg(struct i2c_client *client, u16 reg, u16 *val)
{
struct i2c_msg msg[2];
u8 buf[2];
int ret;
buf[0] = (reg >> 8) & 0xff;
buf[1] = reg & 0xFF;
msg[0].addr = client->addr;
msg[0].flags = client->flags;
msg[0].buf = buf;
msg[0].len = sizeof(buf);
msg[1].addr = client->addr;
msg[1].flags = client->flags | I2C_M_RD;
msg[1].buf = buf;
msg[1].len = 2;
ret = i2c_transfer(client->adapter, msg, 2);
if (ret >= 0) {
*val = (buf[0] << 8) | buf[1];
return 0;
}
dev_err(&client->dev,
"ar0330 read reg:0x%x failed !\n", reg);
return ret;
}
static int ar0330_check_sensor_id(struct ar0330 *ar0330,
struct i2c_client *client)
{
struct device *dev = &ar0330->client->dev;
u16 id = 0;
int ret;
ret = ar0330_read_reg(client, AR0330_REG_CHIP_ID, &id);
if (id != CHIP_ID) {
dev_err(dev, "Unexpected sensor id(%x), ret(%d)\n", id, ret);
return -ENODEV;
}
dev_info(dev, "Detected AR0330 sensor\n");
return 0;
}
static int ar0330_get_reso_dist(const struct ar0330_mode *mode,
struct v4l2_mbus_framefmt *framefmt)
{
return abs(mode->width - framefmt->width) +
abs(mode->height - framefmt->height);
}
static const struct ar0330_mode *
ar0330_find_best_fit(struct v4l2_subdev_format *fmt)
{
struct v4l2_mbus_framefmt *framefmt = &fmt->format;
int dist;
int cur_best_fit = 0;
int cur_best_fit_dist = -1;
u32 i;
for (i = 0; i < ARRAY_SIZE(supported_modes); i++) {
dist = ar0330_get_reso_dist(&supported_modes[i], framefmt);
if (cur_best_fit_dist == -1 || dist < cur_best_fit_dist) {
cur_best_fit_dist = dist;
cur_best_fit = i;
}
}
return &supported_modes[cur_best_fit];
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int ar0330_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
#else
static int ar0330_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
#endif
{
struct ar0330 *ar0330 = to_ar0330(sd);
const struct ar0330_mode *mode;
s64 h_blank, vblank_def;
mutex_lock(&ar0330->mutex);
mode = ar0330_find_best_fit(fmt);
fmt->format.code = PIX_FORMAT;
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.field = V4L2_FIELD_NONE;
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
*v4l2_subdev_get_try_format(sd, sd_state, fmt->pad) = fmt->format;
#else
*v4l2_subdev_get_try_format(sd, cfg, fmt->pad) = fmt->format;
#endif
#else
mutex_unlock(&ar0330->mutex);
return -ENOTTY;
#endif
} else {
ar0330->cur_mode = mode;
h_blank = mode->hts_def - mode->width;
__v4l2_ctrl_modify_range(ar0330->hblank, h_blank,
h_blank, 1, h_blank);
vblank_def = mode->vts_def - mode->height;
__v4l2_ctrl_modify_range(ar0330->vblank, vblank_def,
AR0330_VTS_MAX - mode->height,
1, vblank_def);
}
mutex_unlock(&ar0330->mutex);
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int ar0330_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_format *fmt)
#else
static int ar0330_get_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_format *fmt)
#endif
{
struct ar0330 *ar0330 = to_ar0330(sd);
const struct ar0330_mode *mode = ar0330->cur_mode;
mutex_lock(&ar0330->mutex);
if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) {
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
fmt->format = *v4l2_subdev_get_try_format(sd, sd_state, fmt->pad);
#else
fmt->format = *v4l2_subdev_get_try_format(sd, cfg, fmt->pad);
#endif
#else
mutex_unlock(&ar0330->mutex);
return -ENOTTY;
#endif
} else {
fmt->format.width = mode->width;
fmt->format.height = mode->height;
fmt->format.code = PIX_FORMAT;
fmt->format.field = V4L2_FIELD_NONE;
}
mutex_unlock(&ar0330->mutex);
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int ar0330_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_mbus_code_enum *code)
#else
static int ar0330_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_mbus_code_enum *code)
#endif
{
if (code->index != 0)
return -EINVAL;
code->code = PIX_FORMAT;
return 0;
}
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int ar0330_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_size_enum *fse)
#else
static int ar0330_enum_frame_sizes(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_size_enum *fse)
#endif
{
if (fse->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fse->code != PIX_FORMAT)
return -EINVAL;
fse->min_width = supported_modes[fse->index].width;
fse->max_width = supported_modes[fse->index].width;
fse->max_height = supported_modes[fse->index].height;
fse->min_height = supported_modes[fse->index].height;
return 0;
}
static int ar0330_enable_test_pattern(struct ar0330 *ar0330, u32 pattern)
{
return 0;
}
static void ar0330_get_module_inf(struct ar0330 *ar0330,
struct rkmodule_inf *inf)
{
memset(inf, 0, sizeof(*inf));
strscpy(inf->base.sensor, AR0330_NAME, sizeof(inf->base.sensor));
strscpy(inf->base.module, ar0330->module_name,
sizeof(inf->base.module));
strscpy(inf->base.lens, ar0330->len_name, sizeof(inf->base.lens));
}
static long ar0330_ioctl(struct v4l2_subdev *sd, unsigned int cmd, void *arg)
{
struct ar0330 *ar0330 = to_ar0330(sd);
long ret = 0;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
ar0330_get_module_inf(ar0330, (struct rkmodule_inf *)arg);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#ifdef CONFIG_COMPAT
static long ar0330_compat_ioctl32(struct v4l2_subdev *sd,
unsigned int cmd, unsigned long arg)
{
void __user *up = compat_ptr(arg);
struct rkmodule_inf *inf;
long ret;
switch (cmd) {
case RKMODULE_GET_MODULE_INFO:
inf = kzalloc(sizeof(*inf), GFP_KERNEL);
if (!inf) {
ret = -ENOMEM;
return ret;
}
ret = ar0330_ioctl(sd, cmd, inf);
if (!ret) {
ret = copy_to_user(up, inf, sizeof(*inf));
if (ret)
ret = -EFAULT;
}
kfree(inf);
break;
default:
ret = -ENOIOCTLCMD;
break;
}
return ret;
}
#endif
static int __ar0330_start_stream(struct ar0330 *ar0330)
{
serializer_t *serializer = ar0330->serializer;
struct i2c_client *client = ar0330->client;
struct device *dev = &client->dev;
int ret = 0;
dev_info(dev, "ar0330 device start stream\n");
if (serializer == NULL) {
dev_err(dev, "%s: serializer error\n", __func__);
return -EINVAL;
}
if (serializer->ser_ops == NULL) {
dev_err(dev, "%s: serializer ser_ops error\n", __func__);
return -EINVAL;
}
ret = serializer->ser_ops->ser_module_init(serializer);
if (ret) {
dev_err(dev, "%s: serializer module_init error\n", __func__);
return ret;
}
ret = ar0330_check_sensor_id(ar0330, ar0330->client);
if (ret)
return ret;
ret = ar0330_write_array(ar0330->client, ar0330_global_regs);
if (ret) {
dev_err(dev, "could not set global init registers\n");
return ret;
}
ret = ar0330_write_array(ar0330->client, ar0330->cur_mode->reg_list);
if (ret)
return ret;
/* In case these controls are set before streaming */
ret = __v4l2_ctrl_handler_setup(&ar0330->ctrl_handler);
if (ret)
return ret;
ret = ar0330_write(ar0330->client, AR0330_REG_CTRL_MODE,
AR0330_MODE_STREAMING);
if (ret) {
dev_err(dev, "%s: ar0330 start stream error\n", __func__);
return ret;
}
return 0;
}
static int __ar0330_stop_stream(struct ar0330 *ar0330)
{
serializer_t *serializer = ar0330->serializer;
struct i2c_client *client = ar0330->client;
struct device *dev = &client->dev;
int ret = 0;
dev_info(dev, "ar0330 device stop stream\n");
ret = ar0330_write(ar0330->client, AR0330_REG_CTRL_MODE,
AR0330_MODE_SW_STANDBY);
if (ret) {
dev_err(dev, "%s: ar0330 stop stream error\n", __func__);
return ret;
}
if (serializer == NULL) {
dev_err(dev, "%s: serializer error\n", __func__);
return -EINVAL;
}
if (serializer->ser_ops == NULL) {
dev_err(dev, "%s: serializer ser_ops error\n", __func__);
return -EINVAL;
}
ret = serializer->ser_ops->ser_module_deinit(serializer);
if (ret) {
dev_err(dev, "%s: serializer module_deinit error\n", __func__);
return ret;
}
return 0;
}
static int ar0330_s_stream(struct v4l2_subdev *sd, int on)
{
struct ar0330 *ar0330 = to_ar0330(sd);
struct i2c_client *client = ar0330->client;
int ret = 0;
mutex_lock(&ar0330->mutex);
on = !!on;
if (on == ar0330->streaming)
goto unlock_and_return;
if (on) {
#if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(&client->dev);
#else
ret = pm_runtime_get_sync(&client->dev);
#endif
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ret = __ar0330_start_stream(ar0330);
if (ret) {
v4l2_err(sd, "start stream failed while write regs\n");
pm_runtime_put(&client->dev);
goto unlock_and_return;
}
} else {
__ar0330_stop_stream(ar0330);
pm_runtime_put(&client->dev);
}
ar0330->streaming = on;
unlock_and_return:
mutex_unlock(&ar0330->mutex);
return ret;
}
static int ar0330_g_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_frame_interval *fi)
{
struct ar0330 *ar0330 = to_ar0330(sd);
const struct ar0330_mode *mode = ar0330->cur_mode;
fi->interval = mode->max_fps;
return 0;
}
static int ar0330_s_power(struct v4l2_subdev *sd, int on)
{
struct ar0330 *ar0330 = to_ar0330(sd);
struct i2c_client *client = ar0330->client;
int ret = 0;
mutex_lock(&ar0330->mutex);
/* If the power state is not modified - no work to do. */
if (ar0330->power_on == !!on)
goto unlock_and_return;
if (on) {
#if KERNEL_VERSION(5, 5, 0) <= LINUX_VERSION_CODE
ret = pm_runtime_resume_and_get(&client->dev);
#else
ret = pm_runtime_get_sync(&client->dev);
#endif
if (ret < 0) {
pm_runtime_put_noidle(&client->dev);
goto unlock_and_return;
}
ar0330->power_on = true;
} else {
pm_runtime_put(&client->dev);
ar0330->power_on = false;
}
unlock_and_return:
mutex_unlock(&ar0330->mutex);
return ret;
}
/* Calculate the delay in us by clock rate and clock cycles */
static inline u32 ar0330_cal_delay(u32 cycles)
{
return DIV_ROUND_UP(cycles, AR0330_XVCLK_FREQ / 1000 / 1000);
}
static int __ar0330_power_on(struct ar0330 *ar0330)
{
struct device *dev = &ar0330->client->dev;
u32 delay_us;
int ret = 0;
dev_info(dev, "ar0330 device power on\n");
ret = regulator_enable(ar0330->poc_regulator);
if (ret < 0) {
dev_err(dev, "Unable to turn PoC regulator on\n");
return ret;
}
/* 8192 cycles prior to first SCCB transaction */
delay_us = ar0330_cal_delay(92000);
usleep_range(delay_us, delay_us * 2);
return 0;
}
static void __ar0330_power_off(struct ar0330 *ar0330)
{
struct device *dev = &ar0330->client->dev;
int ret = 0;
dev_info(dev, "ar0330 device power off\n");
ret = regulator_disable(ar0330->poc_regulator);
if (ret < 0)
dev_warn(dev, "Unable to turn PoC regulator off\n");
}
static int ar0330_runtime_resume(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ar0330 *ar0330 = to_ar0330(sd);
return __ar0330_power_on(ar0330);
}
static int ar0330_runtime_suspend(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ar0330 *ar0330 = to_ar0330(sd);
__ar0330_power_off(ar0330);
return 0;
}
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static int ar0330_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh)
{
struct ar0330 *ar0330 = to_ar0330(sd);
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->state, 0);
#else
struct v4l2_mbus_framefmt *try_fmt =
v4l2_subdev_get_try_format(sd, fh->pad, 0);
#endif
const struct ar0330_mode *def_mode = &supported_modes[0];
mutex_lock(&ar0330->mutex);
/* Initialize try_fmt */
try_fmt->width = def_mode->width;
try_fmt->height = def_mode->height;
try_fmt->code = PIX_FORMAT;
try_fmt->field = V4L2_FIELD_NONE;
mutex_unlock(&ar0330->mutex);
/* No crop or compose */
return 0;
}
#endif
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
static int ar0330_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_state *sd_state,
struct v4l2_subdev_frame_interval_enum *fie)
#else
static int ar0330_enum_frame_interval(struct v4l2_subdev *sd,
struct v4l2_subdev_pad_config *cfg,
struct v4l2_subdev_frame_interval_enum *fie)
#endif
{
if (fie->index >= ARRAY_SIZE(supported_modes))
return -EINVAL;
if (fie->code != PIX_FORMAT)
return -EINVAL;
fie->width = supported_modes[fie->index].width;
fie->height = supported_modes[fie->index].height;
fie->interval = supported_modes[fie->index].max_fps;
return 0;
}
static const struct dev_pm_ops ar0330_pm_ops = {
SET_RUNTIME_PM_OPS(ar0330_runtime_suspend,
ar0330_runtime_resume, NULL)
};
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
static const struct v4l2_subdev_internal_ops ar0330_internal_ops = {
.open = ar0330_open,
};
#endif
static const struct v4l2_subdev_core_ops ar0330_core_ops = {
.s_power = ar0330_s_power,
.ioctl = ar0330_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl32 = ar0330_compat_ioctl32,
#endif
};
static const struct v4l2_subdev_video_ops ar0330_video_ops = {
.s_stream = ar0330_s_stream,
.g_frame_interval = ar0330_g_frame_interval,
};
static const struct v4l2_subdev_pad_ops ar0330_pad_ops = {
.enum_mbus_code = ar0330_enum_mbus_code,
.enum_frame_size = ar0330_enum_frame_sizes,
.enum_frame_interval = ar0330_enum_frame_interval,
.get_fmt = ar0330_get_fmt,
.set_fmt = ar0330_set_fmt,
};
static const struct v4l2_subdev_ops ar0330_subdev_ops = {
.core = &ar0330_core_ops,
.video = &ar0330_video_ops,
.pad = &ar0330_pad_ops,
};
static struct gain_range gain_level[] = {
{101, 0x00}, {104, 0x01}, {108, 0x02}, {111, 0x03}, {115, 0x04},
{120, 0x05}, {124, 0x06}, {129, 0x07}, {134, 0x08}, {140, 0x09},
{146, 0x0a}, {153, 0x0b}, {161, 0x0c}, {169, 0x0d}, {179, 0x0e},
{189, 0x0f}, {201, 0x10}, {214, 0x12}, {230, 0x14}, {247, 0x16},
{268, 0x18}, {292, 0x1a}, {321, 0x1c}, {357, 0x1e}, {401, 0x20},
{457, 0x24}, {533, 0x28}, {641, 0x2c}, {801, 0x30}
};
static int ar0330_set_gain(struct ar0330 *ar0330, int gain)
{
int ret = 0, i = 0;
int num_gains = ARRAY_SIZE(gain_level);
u16 again = 0;
for (i = 0; i < num_gains; i++) {
if (gain_level[i].range_h >= gain) {
again = gain_level[i].val;
break;
}
}
ret = ar0330_write(ar0330->client, AR0330_REG_ANALOG_GAIN, again);
return ret;
}
static int ar0330_set_ctrl(struct v4l2_ctrl *ctrl)
{
struct ar0330 *ar0330 = container_of(ctrl->handler,
struct ar0330, ctrl_handler);
struct i2c_client *client = ar0330->client;
int ret = 0;
if (pm_runtime_get(&client->dev) <= 0)
return 0;
// i2c can't be accessed before serdes link ok
if (rkser_is_inited(ar0330->serializer) == false) {
dev_warn(&client->dev, "%s ctrl id = 0x%x before serializer init\n",
__func__, ctrl->id);
return 0;
}
switch (ctrl->id) {
case V4L2_CID_EXPOSURE:
ret = ar0330_write(ar0330->client,
AR0330_REG_EXPOSURE, ctrl->val);
break;
case V4L2_CID_ANALOGUE_GAIN:
ret = ar0330_set_gain(ar0330, ctrl->val);
break;
case V4L2_CID_VBLANK:
ret = ar0330_write(ar0330->client, AR0330_REG_VTS,
ctrl->val + ar0330->cur_mode->height);
break;
case V4L2_CID_TEST_PATTERN:
ret = ar0330_enable_test_pattern(ar0330, ctrl->val);
break;
default:
dev_warn(&client->dev, "%s Unhandled id:0x%x, val:0x%x\n",
__func__, ctrl->id, ctrl->val);
break;
}
pm_runtime_put(&client->dev);
return ret;
}
static const struct v4l2_ctrl_ops ar0330_ctrl_ops = {
.s_ctrl = ar0330_set_ctrl,
};
static int ar0330_initialize_controls(struct ar0330 *ar0330)
{
const struct ar0330_mode *mode;
struct v4l2_ctrl_handler *handler;
struct v4l2_ctrl *ctrl;
s64 exposure_max, vblank_def;
u32 h_blank;
int ret;
handler = &ar0330->ctrl_handler;
mode = ar0330->cur_mode;
ret = v4l2_ctrl_handler_init(handler, 7);
if (ret)
return ret;
handler->lock = &ar0330->mutex;
ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ,
0, 0, link_freq_menu_items);
if (ctrl)
ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY;
v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE,
0, AR0330_PIXEL_RATE, 1, AR0330_PIXEL_RATE);
h_blank = mode->hts_def - mode->width;
ar0330->hblank = v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK,
h_blank, h_blank, 1, h_blank);
if (ar0330->hblank)
ar0330->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY;
vblank_def = mode->vts_def - mode->height;
ar0330->vblank = v4l2_ctrl_new_std(handler, &ar0330_ctrl_ops,
V4L2_CID_VBLANK, vblank_def,
AR0330_VTS_MAX - mode->height,
1, vblank_def);
exposure_max = mode->vts_def - 4;
ar0330->exposure = v4l2_ctrl_new_std(handler, &ar0330_ctrl_ops,
V4L2_CID_EXPOSURE, AR0330_EXPOSURE_MIN,
exposure_max, AR0330_EXPOSURE_STEP,
mode->exp_def);
ar0330->anal_gain = v4l2_ctrl_new_std(handler, &ar0330_ctrl_ops,
V4L2_CID_ANALOGUE_GAIN, ANALOG_GAIN_MIN,
ANALOG_GAIN_MAX, ANALOG_GAIN_STEP,
ANALOG_GAIN_DEFAULT);
ar0330->test_pattern = v4l2_ctrl_new_std_menu_items(handler,
&ar0330_ctrl_ops, V4L2_CID_TEST_PATTERN,
ARRAY_SIZE(ar0330_test_pattern_menu) - 1,
0, 0, ar0330_test_pattern_menu);
if (handler->error) {
ret = handler->error;
dev_err(&ar0330->client->dev,
"Failed to init controls(%d)\n", ret);
goto err_free_handler;
}
ar0330->subdev.ctrl_handler = handler;
return 0;
err_free_handler:
v4l2_ctrl_handler_free(handler);
return ret;
}
static int ar0330_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct device *dev = &client->dev;
struct device_node *node = dev->of_node;
struct ar0330 *ar0330 = NULL;
struct v4l2_subdev *sd = NULL;
serializer_t *serializer = NULL;
char facing[2];
int ret;
dev_info(dev, "driver version: %02x.%02x.%02x",
DRIVER_VERSION >> 16,
(DRIVER_VERSION & 0xff00) >> 8,
DRIVER_VERSION & 0x00ff);
dev_info(dev, "Sensor MCLK = %d, MIPI Clock = %d", AR0330_XVCLK_FREQ, AR0330_LINK_FREQ);
ar0330 = devm_kzalloc(dev, sizeof(*ar0330), GFP_KERNEL);
if (!ar0330)
return -ENOMEM;
ret = of_property_read_u32(node, RKMODULE_CAMERA_MODULE_INDEX,
&ar0330->module_index);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_FACING,
&ar0330->module_facing);
ret |= of_property_read_string(node, RKMODULE_CAMERA_MODULE_NAME,
&ar0330->module_name);
ret |= of_property_read_string(node, RKMODULE_CAMERA_LENS_NAME,
&ar0330->len_name);
if (ret) {
dev_err(dev, "could not get module information!\n");
return -EINVAL;
}
ar0330->client = client;
ar0330->cam_i2c_addr_map = client->addr;
ar0330->cur_mode = &supported_modes[0];
// poc regulator
ar0330->poc_regulator = devm_regulator_get(dev, "poc");
if (IS_ERR(ar0330->poc_regulator)) {
if (PTR_ERR(ar0330->poc_regulator) != -EPROBE_DEFER)
dev_err(dev, "Unable to get PoC regulator (%ld)\n",
PTR_ERR(ar0330->poc_regulator));
else
dev_err(dev, "Get PoC regulator deferred\n");
ret = PTR_ERR(ar0330->poc_regulator);
return ret;
}
mutex_init(&ar0330->mutex);
sd = &ar0330->subdev;
v4l2_i2c_subdev_init(sd, client, &ar0330_subdev_ops);
ret = ar0330_initialize_controls(ar0330);
if (ret)
goto err_destroy_mutex;
ret = __ar0330_power_on(ar0330);
if (ret)
goto err_free_handler;
#ifdef CONFIG_VIDEO_V4L2_SUBDEV_API
sd->internal_ops = &ar0330_internal_ops;
sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE;
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
ar0330->pad.flags = MEDIA_PAD_FL_SOURCE;
sd->entity.function = MEDIA_ENT_F_CAM_SENSOR;
ret = media_entity_pads_init(&sd->entity, 1, &ar0330->pad);
if (ret < 0)
goto err_power_off;
#endif
memset(facing, 0, sizeof(facing));
if (strcmp(ar0330->module_facing, "back") == 0)
facing[0] = 'b';
else
facing[0] = 'f';
snprintf(sd->name, sizeof(sd->name), "m%02d_%s_%s %s",
ar0330->module_index, facing,
AR0330_NAME, dev_name(sd->dev));
#if KERNEL_VERSION(6, 1, 0) <= LINUX_VERSION_CODE
ret = v4l2_async_register_subdev_sensor(sd);
#else
ret = v4l2_async_register_subdev_sensor_common(sd);
#endif
if (ret) {
dev_err(dev, "v4l2 async register subdev failed\n");
goto err_clean_entity;
}
/* serializer bind */
serializer = rkcam_get_ser_by_phandle(dev);
if (serializer != NULL) {
dev_info(dev, "serializer bind success\n");
ar0330->serializer = serializer;
} else {
dev_err(dev, "serializer bind fail\n");
ar0330->serializer = NULL;
}
pm_runtime_set_active(dev);
pm_runtime_enable(dev);
pm_runtime_idle(dev);
return 0;
err_clean_entity:
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
err_power_off:
__ar0330_power_off(ar0330);
err_free_handler:
v4l2_ctrl_handler_free(&ar0330->ctrl_handler);
err_destroy_mutex:
mutex_destroy(&ar0330->mutex);
return ret;
}
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
static int ar0330_remove(struct i2c_client *client)
#else
static void ar0330_remove(struct i2c_client *client)
#endif
{
struct v4l2_subdev *sd = i2c_get_clientdata(client);
struct ar0330 *ar0330 = to_ar0330(sd);
v4l2_async_unregister_subdev(sd);
#if defined(CONFIG_MEDIA_CONTROLLER)
media_entity_cleanup(&sd->entity);
#endif
v4l2_ctrl_handler_free(&ar0330->ctrl_handler);
mutex_destroy(&ar0330->mutex);
pm_runtime_disable(&client->dev);
if (!pm_runtime_status_suspended(&client->dev))
__ar0330_power_off(ar0330);
pm_runtime_set_suspended(&client->dev);
#if KERNEL_VERSION(6, 1, 0) > LINUX_VERSION_CODE
return 0;
#endif
}
static const struct of_device_id ar0330_of_match[] = {
{ .compatible = "rockchip,Aptina,ar0330" },
{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, ar0330_of_match);
static struct i2c_driver ar0330_i2c_driver = {
.driver = {
.name = "rkcam-ar0330",
.pm = &ar0330_pm_ops,
.of_match_table = of_match_ptr(ar0330_of_match),
},
.probe = &ar0330_probe,
.remove = &ar0330_remove,
};
module_i2c_driver(ar0330_i2c_driver);
MODULE_AUTHOR("Cai Wenzhong <cwz@rock-chips.com>");
MODULE_DESCRIPTION("Rockchip Remote Aptina AR0330 Sensor Driver");
MODULE_LICENSE("GPL");