#include #include #include #include #include #include #include #include #include #include #include "hiredis.h" // 前置声明:黄灯控制接口 static void start_yellow_blink(void); static void stop_yellow_blink(void); static void set_yellow_on(void); static int get_hw_mac_from_interfaces(const char* interfaces_path, char* out_mac, size_t out_size); static int is_hex(char c) { return (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F'); } static void to_upper_str(char* s) { for (; *s; ++s) *s = (char)toupper((unsigned char)*s); } // 新增:检测是否包含显式MAC(带分隔符的形式),用于避免误把批次号当MAC static int has_explicit_mac_pattern(const char* input) { if (!input) return 0; size_t n = strlen(input); // 1) 冒号分隔 for (size_t i = 0; i + 17 <= n; ++i) { int ok = 1; for (int seg = 0; seg < 6 && ok; ++seg) { size_t pos = i + seg * 3; if (!is_hex(input[pos]) || !is_hex(input[pos + 1])) { ok = 0; break; } if (seg != 5) { if (input[pos + 2] != ':') { ok = 0; break; } } } if (ok) return 1; } // 2) 连字符分隔 for (size_t i = 0; i + 17 <= n; ++i) { int ok = 1; for (int seg = 0; seg < 6 && ok; ++seg) { size_t pos = i + seg * 3; if (!is_hex(input[pos]) || !is_hex(input[pos + 1])) { ok = 0; break; } if (seg != 5) { if (input[pos + 2] != '-') { ok = 0; break; } } } if (ok) return 1; } return 0; } // Remove separators and validate exactly 12 hex chars static int normalize_raw_mac(const char* in, char* raw12, size_t raw12_size) { if (!in || !raw12 || raw12_size < 13) return -1; size_t len = strlen(in); size_t j = 0; for (size_t i = 0; i < len; ++i) { char c = in[i]; if (c == ':' || c == '-' || c == ' ') continue; if (!is_hex(c)) return -1; if (j >= 12) return -1; // too long raw12[j++] = c; } if (j != 12) return -1; raw12[12] = '\0'; return 0; } static int format_mac_12_to_colon(const char* raw12, char* out, size_t out_size) { if (!raw12 || !out || out_size < 18) return -1; // XX:XX:XX:XX:XX:XX\0 char upper[13]; strncpy(upper, raw12, 12); upper[12] = '\0'; to_upper_str(upper); snprintf(out, out_size, "%c%c:%c%c:%c%c:%c%c:%c%c:%c%c", upper[0], upper[1], upper[2], upper[3], upper[4], upper[5], upper[6], upper[7], upper[8], upper[9], upper[10], upper[11]); return 0; } // Try to extract MAC from input string in various common formats static int extract_mac(const char* input, char* out_mac, size_t out_size) { if (!input || !out_mac || out_size < 18) return -1; size_t n = strlen(input); // 1) Look for colon-separated MAC: ([0-9A-Fa-f]{2}:){5}[0-9A-Fa-f]{2} for (size_t i = 0; i + 17 <= n; ++i) { int ok = 1; for (int seg = 0; seg < 6 && ok; ++seg) { size_t pos = i + seg * 3; if (!is_hex(input[pos]) || !is_hex(input[pos + 1])) { ok = 0; break; } if (seg != 5) { if (input[pos + 2] != ':') { ok = 0; break; } } } if (ok) { // Copy and uppercase strncpy(out_mac, input + i, 17); out_mac[17] = '\0'; to_upper_str(out_mac); return 0; } } // 2) Look for hyphen-separated MAC: ([0-9A-Fa-f]{2}-){5}[0-9A-Fa-f]{2} for (size_t i = 0; i + 17 <= n; ++i) { int ok = 1; for (int seg = 0; seg < 6 && ok; ++seg) { size_t pos = i + seg * 3; if (!is_hex(input[pos]) || !is_hex(input[pos + 1])) { ok = 0; break; } if (seg != 5) { if (input[pos + 2] != '-') { ok = 0; break; } } } if (ok) { char tmp[18]; strncpy(tmp, input + i, 17); tmp[17] = '\0'; // Normalize to 12 hex then colon char raw12[13]; if (normalize_raw_mac(tmp, raw12, sizeof(raw12)) == 0 && format_mac_12_to_colon(raw12, out_mac, out_size) == 0) { return 0; } } } // 3) JSON-like: "mac":"XXXXXXXXXXXX" or with colons const char* key_variants[] = { "\"mac\"", "MAC", "mac", "Mac" }; for (size_t kv = 0; kv < sizeof(key_variants)/sizeof(key_variants[0]); ++kv) { const char* p = strstr(input, key_variants[kv]); if (p) { // find delimiter ':' then take next token until quote/space p = strchr(p, ':'); if (p) { ++p; // at value start (maybe quotes) while (*p == ' ' || *p == '"') ++p; // copy until non-hex or separator char rawbuf[64] = {0}; size_t j = 0; while (*p && j < sizeof(rawbuf)-1) { if (is_hex(*p) || *p == ':' || *p == '-' ) { rawbuf[j++] = *p; ++p; } else break; } rawbuf[j] = '\0'; char raw12[13]; if (normalize_raw_mac(rawbuf, raw12, sizeof(raw12)) == 0 && format_mac_12_to_colon(raw12, out_mac, out_size) == 0) { return 0; } } } } // 4) Fallback: first 12 consecutive hex chars for (size_t i = 0; i < n; ++i) { if (is_hex(input[i])) { size_t j = 0; char raw12[13]; size_t k = i; while (k < n && is_hex(input[k]) && j < 12) { raw12[j++] = input[k++]; } if (j == 12) { raw12[12] = '\0'; if (format_mac_12_to_colon(raw12, out_mac, out_size) == 0) { return 0; } } } } return -1; // not found } // 新增:提取批次号(支持 batch=XXXX / Batch:XXXX / 扫码包含“批次”关键字) static int extract_batch(const char* input, char* out_batch, size_t out_size) { if (!input || !out_batch || out_size < 16) return -1; size_t n = strlen(input); // 主匹配:任意位置出现 'D' 或 'd' 后跟 14 位数字 for (size_t i = 0; i + 15 <= n; ++i) { char c = input[i]; if (c == 'D' || c == 'd') { int ok = 1; for (int k = 1; k <= 14; ++k) { char d = input[i + k]; if (d < '0' || d > '9') { ok = 0; break; } } if (ok) { out_batch[0] = 'D'; memcpy(out_batch + 1, input + i + 1, 14); out_batch[15] = '\0'; return 0; } } } // 回退:按键名解析(batch/Batch/BATCH/批次) const char* keys[] = {"batch", "Batch", "BATCH", "批次"}; for (size_t i = 0; i < sizeof(keys)/sizeof(keys[0]); ++i) { const char* p = strstr(input, keys[i]); if (!p) continue; // 跳过键名后的分隔符 p += strlen(keys[i]); while (*p == ' ' || *p == '=' || *p == ':' || (unsigned char)*p == 0xEF) { if ((unsigned char)*p == 0xEF) { p++; if ((unsigned char)*p == 0xBC) { p++; if ((unsigned char)*p == 0x9A) { p++; } } } else { p++; } } // 读取字母数字序列作为批次号 size_t j = 0; while (*p && j < out_size - 1) { if ((*p >= '0' && *p <= '9') || (*p >= 'A' && *p <= 'Z') || (*p >= 'a' && *p <= 'z') || *p == '_' || *p == '-') { out_batch[j++] = *p++; } else { break; } } out_batch[j] = '\0'; if (j > 0) { // 规范化:若形如 d+14位数字,转为大写D if (j >= 15 && (out_batch[0] == 'd' || out_batch[0] == 'D')) { int ok2 = 1; for (int k = 1; k <= 14; ++k) { char d = out_batch[k]; if (d < '0' || d > '9') { ok2 = 0; break; } } if (ok2) out_batch[0] = 'D'; } return 0; } } const char* p = strstr(input, "batch"); if (p) { p += 5; size_t j = 0; while (*p && j < out_size - 1 && ((*p >= '0' && *p <= '9') || (*p >= 'A' && *p <= 'Z') || (*p >= 'a' && *p <= 'z'))) { out_batch[j++] = *p++; } out_batch[j] = '\0'; if (j > 0) { if (j >= 15 && (out_batch[0] == 'd' || out_batch[0] == 'D')) { int ok2 = 1; for (int k = 1; k <= 14; ++k) { char d = out_batch[k]; if (d < '0' || d > '9') { ok2 = 0; break; } } if (ok2) out_batch[0] = 'D'; } return 0; } } return -1; } // 通过redis-cli查询批次映射得到MAC static int redis_query_mac(const char* host_opt, const char* port_opt, const char* db_opt, const char* pool_opt, const char* batch, char* out_mac, size_t out_size) { if (!batch || !out_mac || out_size < 18) return -1; const char* mock = getenv("REDIS_MOCK_MAC"); if (mock && *mock) { fprintf(stderr, "[redis] use REDIS_MOCK_MAC=%s\n", mock); if (extract_mac(mock, out_mac, out_size) == 0) return 0; strncpy(out_mac, mock, out_size - 1); out_mac[out_size - 1] = '\0'; return 0; } const char* host = host_opt ? host_opt : (getenv("REDIS_HOST") ? getenv("REDIS_HOST") : "180.163.74.83"); int port = port_opt ? atoi(port_opt) : (getenv("REDIS_PORT") ? atoi(getenv("REDIS_PORT")) : 6379); int db = db_opt ? atoi(db_opt) : (getenv("REDIS_DB") ? atoi(getenv("REDIS_DB")) : 0); const char* pool = pool_opt ? pool_opt : (getenv("REDIS_POOL") ? getenv("REDIS_POOL") : "batch_sn_mapping_pdd"); const char* auth = getenv("REDIS_AUTH"); if (!auth || !*auth) auth = "Zzh08165511"; fprintf(stderr, "[redis] connect host=%s port=%d db=%d pool=%s batch=%s\n", host, port, db, pool, batch); struct timeval tv; tv.tv_sec = 3; tv.tv_usec = 0; redisContext* c = redisConnectWithTimeout(host, port, tv); if (!c || c->err) { fprintf(stderr, "[redis] connect error: %s\n", c ? c->errstr : "unknown"); if (c) redisFree(c); return -1; } if (auth && *auth) { redisReply* ra = (redisReply*)redisCommand(c, "AUTH %s", auth); if (!ra || (ra->type == REDIS_REPLY_ERROR)) { fprintf(stderr, "[redis] AUTH error: %s\n", ra && ra->str ? ra->str : "no-reply"); if (ra) freeReplyObject(ra); redisFree(c); return -1; } fprintf(stderr, "[redis] AUTH ok\n"); freeReplyObject(ra); } if (db > 0) { redisReply* rs = (redisReply*)redisCommand(c, "SELECT %d", db); if (!rs || (rs->type == REDIS_REPLY_ERROR)) { fprintf(stderr, "[redis] SELECT %d error: %s\n", db, rs && rs->str ? rs->str : "no-reply"); if (rs) freeReplyObject(rs); redisFree(c); return -1; } fprintf(stderr, "[redis] SELECT %d ok\n", db); freeReplyObject(rs); } // 尝试 HGET pool batch redisReply* r = (redisReply*)redisCommand(c, "HGET %s %s", pool, batch); if (r) { fprintf(stderr, "[redis] HGET %s %s -> type=%d len=%ld\n", pool, batch, r->type, (long)(r->type==REDIS_REPLY_STRING ? r->len : 0)); if (r->type == REDIS_REPLY_STRING && r->str && r->len > 0) { fprintf(stderr, "[redis] HGET value: %.*s\n", (int)((r->len>128)?128:r->len), r->str); if (extract_mac(r->str, out_mac, out_size) == 0) { freeReplyObject(r); redisFree(c); return 0; } } freeReplyObject(r); } else { fprintf(stderr, "[redis] HGET no-reply\n"); } // 回退 GET pool:batch r = (redisReply*)redisCommand(c, "GET %s:%s", pool, batch); if (r) { fprintf(stderr, "[redis] GET %s:%s -> type=%d len=%ld\n", pool, batch, r->type, (long)(r->type==REDIS_REPLY_STRING ? r->len : 0)); if (r->type == REDIS_REPLY_STRING && r->str && r->len > 0) { fprintf(stderr, "[redis] GET value: %.*s\n", (int)((r->len>128)?128:r->len), r->str); if (extract_mac(r->str, out_mac, out_size) == 0) { freeReplyObject(r); redisFree(c); return 0; } } freeReplyObject(r); } else { fprintf(stderr, "[redis] GET no-reply\n"); } fprintf(stderr, "[redis] not found or value not parsable as MAC\n"); redisFree(c); return -1; } // 审计:在Redis记录每次使用的MAC、批次与时间 static int redis_audit_log(const char* host_opt, const char* port_opt, const char* db_opt, const char* audit_key_opt, const char* batch, const char* mac, const char* note_opt) { if (!batch || !*batch || !mac || !*mac) return -1; const char* host = host_opt ? host_opt : (getenv("REDIS_HOST") ? getenv("REDIS_HOST") : "180.163.74.83"); int port = port_opt ? atoi(port_opt) : (getenv("REDIS_PORT") ? atoi(getenv("REDIS_PORT")) : 6379); int db = db_opt ? atoi(db_opt) : (getenv("REDIS_DB") ? atoi(getenv("REDIS_DB")) : 0); const char* auth = getenv("REDIS_AUTH"); if (!auth || !*auth) auth = "Zzh08165511"; const char* audit_key = audit_key_opt ? audit_key_opt : (getenv("REDIS_AUDIT_KEY") ? getenv("REDIS_AUDIT_KEY") : "mac_batch_audit_pdd"); struct timeval tv; tv.tv_sec = 3; tv.tv_usec = 0; redisContext* c = redisConnectWithTimeout(host, port, tv); if (!c || c->err) { fprintf(stderr, "[redis-audit] connect error: %s\n", c ? c->errstr : "unknown"); if (c) redisFree(c); return -1; } if (auth && *auth) { redisReply* ra = (redisReply*)redisCommand(c, "AUTH %s", auth); if (!ra || (ra->type == REDIS_REPLY_ERROR)) { fprintf(stderr, "[redis-audit] AUTH error: %s\n", ra && ra->str ? ra->str : "no-reply"); if (ra) freeReplyObject(ra); redisFree(c); return -1; } freeReplyObject(ra); } if (db > 0) { redisReply* rs = (redisReply*)redisCommand(c, "SELECT %d", db); if (!rs || (rs->type == REDIS_REPLY_ERROR)) { fprintf(stderr, "[redis-audit] SELECT %d error: %s\n", db, rs && rs->str ? rs->str : "no-reply"); if (rs) freeReplyObject(rs); redisFree(c); return -1; } freeReplyObject(rs); } // 优先使用 Redis 服务器时间,避免设备本地时间不准 long long sv_secs = -1; { redisReply* tr = (redisReply*)redisCommand(c, "TIME"); if (tr && tr->type == REDIS_REPLY_ARRAY && tr->elements >= 2 && tr->element[0] && tr->element[0]->str) { sv_secs = atoll(tr->element[0]->str); } else { fprintf(stderr, "[redis-audit] TIME failed, fallback to local time\n"); } if (tr) freeReplyObject(tr); } time_t base = (sv_secs > 0) ? (time_t)sv_secs : time(NULL); // 中国时区(+08:00),不依赖设备TZ;格式为 YYYY-MM-DD HH:MM:SS time_t base_cn = base + 8 * 3600; struct tm tm_sv_cn; gmtime_r(&base_cn, &tm_sv_cn); char ts_cn[24]; strftime(ts_cn, sizeof(ts_cn), "%Y-%m-%d %H:%M:%S", &tm_sv_cn); char val[320]; snprintf(val, sizeof(val), "ts_cn=%s batch=%s mac=%s%s%s", ts_cn, batch, mac, (note_opt && *note_opt) ? " note=" : "", (note_opt && *note_opt) ? note_opt : ""); // 写入总审计列表 redisReply* r = (redisReply*)redisCommand(c, "LPUSH %s %s", audit_key, val); if (!r || r->type == REDIS_REPLY_ERROR) { fprintf(stderr, "[redis-audit] LPUSH %s failed: %s\n", audit_key, r && r->str ? r->str : "no-reply"); if (r) freeReplyObject(r); redisFree(c); return -1; } freeReplyObject(r); // 同时按批次维度记录,key为 : char batch_key[128]; snprintf(batch_key, sizeof(batch_key), "%s:%s", audit_key, batch); r = (redisReply*)redisCommand(c, "LPUSH %s %s", batch_key, val); if (!r || r->type == REDIS_REPLY_ERROR) { fprintf(stderr, "[redis-audit] LPUSH %s failed: %s\n", batch_key, r && r->str ? r->str : "no-reply"); if (r) freeReplyObject(r); redisFree(c); return -1; } freeReplyObject(r); redisFree(c); fprintf(stderr, "[redis-audit] logged: %s | %s\n", batch, mac); return 0; } static int read_file(const char* path, char** out_buf, size_t* out_len) { FILE* f = fopen(path, "rb"); if (!f) return -1; if (fseek(f, 0, SEEK_END) != 0) { fclose(f); return -1; } long sz = ftell(f); if (sz < 0) { fclose(f); return -1; } rewind(f); char* buf = (char*)malloc((size_t)sz + 1); if (!buf) { fclose(f); return -1; } size_t n = fread(buf, 1, (size_t)sz, f); fclose(f); buf[n] = '\0'; *out_buf = buf; if (out_len) *out_len = n; return 0; } static int write_file(const char* path, const char* buf, size_t len) { FILE* f = fopen(path, "wb"); if (!f) return -1; size_t n = fwrite(buf, 1, len, f); // 确保数据写入到内核缓冲区 fflush(f); int rc = 0; // 将数据与元数据刷新到磁盘,避免重启丢失 int fd = fileno(f); if (fd >= 0) { if (fsync(fd) != 0) rc = -1; } fclose(f); if (n != len) rc = -1; return rc; } static int update_hwaddress_in_interfaces(const char* interfaces_path, const char* mac_colon) { // 如果当前MAC与目标一致,则不改写 char current[64] = {0}; if (get_hw_mac_from_interfaces(interfaces_path, current, sizeof(current)) == 0) { to_upper_str(current); if (strcmp(current, mac_colon) == 0) { printf("MAC 未变化,跳过写入: %s\n", mac_colon); return 0; } } const char* tmpl = "# interfaces(5) file used by ifup(8) and ifdown(8)\n" "# Include files from /etc/network/interfaces.d:\n" "source-directory /etc/network/interfaces.d\n" "auto lo\n" "iface lo inet loopback\n" "auto eth0\n" "iface eth0 inet static\n" "address 10.10.12.12\n" "netmask 255.255.255.0\n" "gateway 10.10.12.1\n" "hwaddress ether %s\n"; char* newbuf = (char*)malloc(1024); if (!newbuf) { fprintf(stderr, "malloc failed\n"); return -1; } int n = snprintf(newbuf, 1024, tmpl, mac_colon); if (n <= 0) { free(newbuf); return -1; } int rc = write_file(interfaces_path, newbuf, (size_t)n); if (rc == 0) { sync(); printf("写入完整 interfaces 文件并更新MAC: %s\n", mac_colon); } else { fprintf(stderr, "写入失败 %s\n", interfaces_path); } free(newbuf); return rc; } static int get_hw_mac_from_interfaces(const char* interfaces_path, char* out_mac, size_t out_size) { char* content = NULL; size_t len = 0; if (read_file(interfaces_path, &content, &len) != 0 || !content) { return -1; } const char* needle = "hwaddress ether"; char* pos = strstr(content, needle); if (!pos) { free(content); return -1; } pos += strlen(needle); while (*pos == ' ') ++pos; size_t j = 0; while (*pos && *pos != '\n' && j < out_size - 1) { if (*pos == ' ' || *pos == '\r' || *pos == '\t') break; out_mac[j++] = *pos++; } out_mac[j] = '\0'; free(content); return j > 0 ? 0 : -1; } static int scanner_read_event2(char* out, size_t out_size) { const char* force_stdin = getenv("SCANNER_FORCE_STDIN"); if (force_stdin && strcmp(force_stdin, "1") == 0) return -1; int fd = open("/dev/input/event2", O_RDONLY); if (fd < 0) return -1; struct input_event ev; size_t j = 0; int shift = 0; while (1) { ssize_t r = read(fd, &ev, sizeof(ev)); if (r <= 0) continue; if (ev.type != EV_KEY) continue; // 维护Shift状态 if (ev.code == KEY_LEFTSHIFT || ev.code == KEY_RIGHTSHIFT) { if (ev.value == 1) shift = 1; // 按下 else if (ev.value == 0) shift = 0; // 松开 continue; } // 只在松开(key up)时采集字符,避免重复 if (ev.value != 0) { if (ev.code == KEY_ENTER || ev.code == KEY_KPENTER) { break; } continue; } char ch = 0; switch (ev.code) { // 数字键行 case KEY_1: ch = shift ? '!' : '1'; break; case KEY_2: ch = shift ? '@' : '2'; break; case KEY_3: ch = shift ? '#' : '3'; break; case KEY_4: ch = shift ? '$' : '4'; break; case KEY_5: ch = shift ? '%' : '5'; break; case KEY_6: ch = shift ? '^' : '6'; break; case KEY_7: ch = shift ? '&' : '7'; break; case KEY_8: ch = shift ? '*' : '8'; break; case KEY_9: ch = shift ? '(' : '9'; break; case KEY_0: ch = shift ? ')' : '0'; break; // 小键盘数字 case KEY_KP1: ch = '1'; break; case KEY_KP2: ch = '2'; break; case KEY_KP3: ch = '3'; break; case KEY_KP4: ch = '4'; break; case KEY_KP5: ch = '5'; break; case KEY_KP6: ch = '6'; break; case KEY_KP7: ch = '7'; break; case KEY_KP8: ch = '8'; break; case KEY_KP9: ch = '9'; break; case KEY_KP0: ch = '0'; break; // 字母(显式映射,避免假设键码连续) case KEY_A: ch = shift ? 'A' : 'a'; break; case KEY_B: ch = shift ? 'B' : 'b'; break; case KEY_C: ch = shift ? 'C' : 'c'; break; case KEY_D: ch = shift ? 'D' : 'd'; break; case KEY_E: ch = shift ? 'E' : 'e'; break; case KEY_F: ch = shift ? 'F' : 'f'; break; case KEY_G: ch = shift ? 'G' : 'g'; break; case KEY_H: ch = shift ? 'H' : 'h'; break; case KEY_I: ch = shift ? 'I' : 'i'; break; case KEY_J: ch = shift ? 'J' : 'j'; break; case KEY_K: ch = shift ? 'K' : 'k'; break; case KEY_L: ch = shift ? 'L' : 'l'; break; case KEY_M: ch = shift ? 'M' : 'm'; break; case KEY_N: ch = shift ? 'N' : 'n'; break; case KEY_O: ch = shift ? 'O' : 'o'; break; case KEY_P: ch = shift ? 'P' : 'p'; break; case KEY_Q: ch = shift ? 'Q' : 'q'; break; case KEY_R: ch = shift ? 'R' : 'r'; break; case KEY_S: ch = shift ? 'S' : 's'; break; case KEY_T: ch = shift ? 'T' : 't'; break; case KEY_U: ch = shift ? 'U' : 'u'; break; case KEY_V: ch = shift ? 'V' : 'v'; break; case KEY_W: ch = shift ? 'W' : 'w'; break; case KEY_X: ch = shift ? 'X' : 'x'; break; case KEY_Y: ch = shift ? 'Y' : 'y'; break; case KEY_Z: ch = shift ? 'Z' : 'z'; break; // 其他符号 case KEY_MINUS: ch = shift ? '_' : '-'; break; case KEY_SEMICOLON: ch = shift ? ':' : ';'; break; case KEY_APOSTROPHE: ch = shift ? '"' : '\''; break; case KEY_BACKSLASH: ch = shift ? '|' : '\\'; break; case KEY_EQUAL: ch = shift ? '+' : '='; break; default: break; } if (ch) { if (j < out_size - 1) out[j++] = ch; } } out[j] = '\0'; close(fd); return j > 0 ? 0 : -1; } static int read_qrcode_string(char* out, size_t out_size) { // Try hardware scanner first printf("尝试读取硬件扫码内容...\n"); if (scanner_read_event2(out, out_size) == 0) return 0; // Fallback: read a line from stdin (useful for piping during tests) fprintf(stdout, "请在终端输入扫码内容并回车...\n"); if (fgets(out, (int)out_size, stdin) == NULL) return -1; // trim newline size_t n = strlen(out); if (n && out[n-1] == '\n') out[n-1] = '\0'; return strlen(out) > 0 ? 0 : -1; } int main(int argc, char** argv) { const char* interfaces_path = (argc >= 3) ? argv[2] : "/etc/network/interfaces"; if (argc < 2) { // No scan input provided: check current MAC and if default, loop until scanned and updated char current_mac[64] = {0}; if (get_hw_mac_from_interfaces(interfaces_path, current_mac, sizeof(current_mac)) != 0) { fprintf(stderr, "无法读取 %s 中的MAC\n", interfaces_path); return 1; } to_upper_str(current_mac); if (strcmp(current_mac, "90:A9:F7:30:00:00") == 0) { fprintf(stdout, "检测到默认MAC %s,开始等待扫码...\n", current_mac); start_yellow_blink(); while (1) { char scanbuf[512] = {0}; if (read_qrcode_string(scanbuf, sizeof(scanbuf)) != 0) { fprintf(stderr, "读取扫码内容失败,重试...\n"); continue; } fprintf(stdout, "扫码原始内容: %s\n", scanbuf); // 优先按批次从Redis查询目标MAC char batch[128] = {0}; char mac_from_redis[32] = {0}; if (extract_batch(scanbuf, batch, sizeof(batch)) == 0) { fprintf(stdout, "识别到批次号: %s,正在查询Redis...\n", batch); if (redis_query_mac(NULL, NULL, NULL, NULL, batch, mac_from_redis, sizeof(mac_from_redis)) == 0) { fprintf(stdout, "Redis返回MAC: %s\n", mac_from_redis); to_upper_str(mac_from_redis); if (strcmp(mac_from_redis, "90:A9:F7:30:00:00") == 0) { fprintf(stderr, "Redis返回为默认MAC,请确认并重新扫码...\n"); continue; } if (update_hwaddress_in_interfaces(interfaces_path, mac_from_redis) == 0) { stop_yellow_blink(); fprintf(stdout, "已更新MAC为: %s\n", mac_from_redis); // 记录审计:批次、MAC、时间 redis_audit_log(NULL, NULL, NULL, NULL, batch, mac_from_redis, "auto-loop"); sync(); char verify_mac[64] = {0}; if (get_hw_mac_from_interfaces(interfaces_path, verify_mac, sizeof(verify_mac)) == 0) { to_upper_str(verify_mac); if (strcmp(verify_mac, "90:A9:F7:30:00:00") != 0) { set_yellow_on(); fprintf(stdout, "黄灯已常亮(MAC非默认)。\n"); } else { fprintf(stderr, "写入后仍为默认MAC,黄灯保持关闭或闪烁。\n"); } } break; } else { fprintf(stderr, "写入失败,重试...\n"); continue; } } else { // Redis失败时,若仅有批次号且不含显式MAC,不再回退使用批次内容当MAC if (!has_explicit_mac_pattern(scanbuf)) { fprintf(stderr, "Redis未查询到该批次对应MAC或连接失败,且扫码内容不含显式MAC(如 12:34:56:78:9A:BC),请重新扫码或确保Redis可用。\n"); continue; } fprintf(stderr, "Redis未查询到该批次对应MAC或连接失败,回退使用扫码中的MAC...\n"); } } // 若未识别到批次号,给出提示 if (extract_batch(scanbuf, batch, sizeof(batch)) != 0) { fprintf(stderr, "未识别到批次号,回退使用扫码中的MAC...\n"); } // 回退:直接从扫码内容提取MAC(此处允许无分隔的12位HEX) char mac_colon[32] = {0}; if (extract_mac("90:A9:F7:30:00:00", mac_colon, sizeof(mac_colon)) != 0) { fprintf(stderr, "未识别到有效MAC,重试...\n"); continue; } to_upper_str(mac_colon); if (strcmp(mac_colon, "90:A9:F7:30:00:00") == 0) { fprintf(stderr, "扫描到默认MAC,请重新扫码...\n"); continue; } if (update_hwaddress_in_interfaces(interfaces_path, mac_colon) == 0) { set_yellow_on(); fprintf(stdout, "已更新MAC为: %s\n", mac_colon); break; } else { fprintf(stderr, "写入失败,重试...\n"); } } return 0; } else { // 若非默认MAC,确保黄灯关闭 set_yellow_on(); fprintf(stdout, "当前MAC非默认(%s),无需更新。\n", current_mac); return 0; } } // Legacy path: user provides scan string directly fprintf(stderr, "Example: %s 'batch=202501;MAC=90A9F7F032E8' ./interfaces\n", argv[0]); const char* scan = argv[1]; // 先按批次从Redis查询 char batch[128] = {0}; char mac_from_redis[32] = {0}; fprintf(stdout, "扫码原始内容: %s\n", scan); if (extract_batch(scan, batch, sizeof(batch)) == 0) { fprintf(stdout, "识别到批次号: %s,正在查询Redis...\n", batch); if (redis_query_mac(NULL, NULL, NULL, NULL, batch, mac_from_redis, sizeof(mac_from_redis)) == 0) { fprintf(stdout, "Redis返回MAC: %s\n", mac_from_redis); if (update_hwaddress_in_interfaces(interfaces_path, mac_from_redis) != 0) { return 3; } // 记录审计:批次、MAC、时间 redis_audit_log(NULL, NULL, NULL, NULL, batch, mac_from_redis, "legacy"); char verify_mac[64] = {0}; if (get_hw_mac_from_interfaces(interfaces_path, verify_mac, sizeof(verify_mac)) == 0) { to_upper_str(verify_mac); if (strcmp(verify_mac, "90:A9:F7:30:00:00") != 0) { set_yellow_on(); fprintf(stdout, "黄灯已常亮(MAC非默认)。\n"); } else { fprintf(stderr, "写入后仍为默认MAC,黄灯保持关闭或闪烁。\n"); } } return 0; } else { if (!has_explicit_mac_pattern(scan)) { fprintf(stderr, "Redis未查询到该批次对应MAC或连接失败,且扫码内容不含显式MAC(如 12:34:56:78:9A:BC),请重新扫码或确保Redis可用。\n"); return 2; } fprintf(stderr, "Redis未查询到该批次对应MAC或连接失败,回退使用扫码中的MAC...\n"); } } // 若未识别到批次号,给出提示 if (extract_batch(scan, batch, sizeof(batch)) != 0) { fprintf(stderr, "未识别到批次号,回退使用扫码中的MAC...\n"); } char mac_colon[32] = {0}; if (extract_mac(scan, mac_colon, sizeof(mac_colon)) != 0) { fprintf(stderr, "Failed to extract MAC from input: %s\n", scan); return 2; } if (update_hwaddress_in_interfaces(interfaces_path, mac_colon) != 0) { return 3; } return 0; } static volatile int led_running = 0; static pthread_t led_thread; static void gpio_init_yellow(void) { int fd = open("/sys/class/gpio/export", O_WRONLY); if (fd >= 0) { write(fd, "113", 3); // TODO 注意改版对应脚名称 close(fd); } fd = open("/sys/class/gpio/gpio113/direction", O_WRONLY); // TODO 注意改版对应脚名称 if (fd >= 0) { write(fd, "out", 3); close(fd); } } static void* led_blink_thread(void* arg) { int fd = open("/sys/class/gpio/gpio113/value", O_WRONLY); // TODO 注意改版对应脚名称 if (fd < 0) return NULL; while (led_running) { write(fd, "1", 1); usleep(200000); write(fd, "0", 1); usleep(200000); } // ensure off write(fd, "0", 1); close(fd); return NULL; } static void start_yellow_blink(void) { if (led_running) return; gpio_init_yellow(); led_running = 1; pthread_create(&led_thread, NULL, led_blink_thread, NULL); } static void stop_yellow_blink(void) { if (!led_running) return; led_running = 0; // 等待线程退出 pthread_join(led_thread, NULL); } static void set_yellow_on(void) { // 确保不再闪烁 stop_yellow_blink(); // 初始化GPIO并置为高电平 gpio_init_yellow(); int fd = open("/sys/class/gpio/gpio113/value", O_WRONLY); // TODO 注意改版对应脚名称 if (fd < 0) return; write(fd, "1", 1); close(fd); }