AP05/openssl/share/man/man1/openssl-pkeyutl.1ossl
2025-06-02 18:54:38 +08:00

685 lines
29 KiB
Plaintext

.\" Automatically generated by Pod::Man 2.28 (Pod::Simple 3.29)
.\"
.\" Standard preamble:
.\" ========================================================================
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. \*(C+ will
.\" give a nicer C++. Capital omega is used to do unbreakable dashes and
.\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
.\" nothing in troff, for use with C<>.
.tr \(*W-
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` ""
. ds C' ""
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
. ds C`
. ds C'
'br\}
.\"
.\" Escape single quotes in literal strings from groff's Unicode transform.
.ie \n(.g .ds Aq \(aq
.el .ds Aq '
.\"
.\" If the F register is turned on, we'll generate index entries on stderr for
.\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
.\" entries marked with X<> in POD. Of course, you'll have to process the
.\" output yourself in some meaningful fashion.
.\"
.\" Avoid warning from groff about undefined register 'F'.
.de IX
..
.nr rF 0
.if \n(.g .if rF .nr rF 1
.if (\n(rF:(\n(.g==0)) \{
. if \nF \{
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
..
. if !\nF==2 \{
. nr % 0
. nr F 2
. \}
. \}
.\}
.rr rF
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ========================================================================
.\"
.IX Title "OPENSSL-PKEYUTL 1ossl"
.TH OPENSSL-PKEYUTL 1ossl "2025-04-24" "3.5.1-dev" "OpenSSL"
.\" For nroff, turn off justification. Always turn off hyphenation; it makes
.\" way too many mistakes in technical documents.
.if n .ad l
.nh
.SH "NAME"
openssl\-pkeyutl \- asymmetric key command
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
\&\fBopenssl\fR \fBpkeyutl\fR
[\fB\-help\fR]
[\fB\-in\fR \fIfile\fR]
[\fB\-rawin\fR]
[\fB\-digest\fR \fIalgorithm\fR]
[\fB\-out\fR \fIfile\fR]
[\fB\-secret\fR \fIfile\fR]
[\fB\-sigfile\fR \fIfile\fR]
[\fB\-inkey\fR \fIfilename\fR|\fIuri\fR]
[\fB\-keyform\fR \fB\s-1DER\s0\fR|\fB\s-1PEM\s0\fR|\fBP12\fR|\fB\s-1ENGINE\s0\fR]
[\fB\-passin\fR \fIarg\fR]
[\fB\-pubin\fR]
[\fB\-certin\fR]
[\fB\-rev\fR]
[\fB\-sign\fR]
[\fB\-verify\fR]
[\fB\-verifyrecover\fR]
[\fB\-encrypt\fR]
[\fB\-decrypt\fR]
[\fB\-derive\fR]
[\fB\-peerkey\fR \fIfile\fR]
[\fB\-peerform\fR \fB\s-1DER\s0\fR|\fB\s-1PEM\s0\fR|\fBP12\fR|\fB\s-1ENGINE\s0\fR]
[\fB\-encap\fR]
[\fB\-decap\fR]
[\fB\-kdf\fR \fIalgorithm\fR]
[\fB\-kdflen\fR \fIlength\fR]
[\fB\-kemop\fR \fImode\fR]
[\fB\-pkeyopt\fR \fIopt\fR:\fIvalue\fR]
[\fB\-pkeyopt_passin\fR \fIopt\fR[:\fIpassarg\fR]]
[\fB\-hexdump\fR]
[\fB\-asn1parse\fR]
[\fB\-engine\fR \fIid\fR]
[\fB\-engine_impl\fR]
[\fB\-rand\fR \fIfiles\fR]
[\fB\-writerand\fR \fIfile\fR]
[\fB\-provider\fR \fIname\fR]
[\fB\-provider\-path\fR \fIpath\fR]
[\fB\-provparam\fR \fI[name:]key=value\fR]
[\fB\-propquery\fR \fIpropq\fR]
[\fB\-config\fR \fIconfigfile\fR]
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
This command can be used to perform low-level operations
on asymmetric (public or private) keys using any supported algorithm.
.PP
By default the signing operation (see \fB\-sign\fR option) is assumed.
.SH "OPTIONS"
.IX Header "OPTIONS"
.IP "\fB\-help\fR" 4
.IX Item "-help"
Print out a usage message.
.IP "\fB\-in\fR \fIfilename\fR" 4
.IX Item "-in filename"
This specifies the input filename to read data from or standard input
if this option is not specified.
.IP "\fB\-rawin\fR" 4
.IX Item "-rawin"
This indicates that the signature or verification input data is raw data,
which is not hashed by any message digest algorithm.
Except with EdDSA,
the user can specify a digest algorithm by using the \fB\-digest\fR option.
For signature algorithms like \s-1RSA, DSA\s0 and \s-1ECDSA,\s0
the default digest algorithm is \s-1SHA256.\s0 For \s-1SM2,\s0 it is \s-1SM3.\s0
.Sp
This option can only be used with \fB\-sign\fR and \fB\-verify\fR.
For EdDSA (the Ed25519 and Ed448 algorithms) this option
is implied since OpenSSL 3.5, and required in earlier versions.
.Sp
The \fB\-digest\fR option implies \fB\-rawin\fR since OpenSSL 3.5.
.IP "\fB\-digest\fR \fIalgorithm\fR" 4
.IX Item "-digest algorithm"
This option can only be used with \fB\-sign\fR and \fB\-verify\fR.
It specifies the digest algorithm that is used to hash the input data
before signing or verifying it with the input key. This option could be omitted
if the signature algorithm does not require preprocessing the input through
a pluggable hash function before signing (for instance, EdDSA). If this option
is omitted but the signature algorithm requires one and the \fB\-rawin\fR option
is given, a default value will be used (see \fB\-rawin\fR for details).
If this option is present, then the \fB\-rawin\fR option
is implied since OpenSSL 3.5, and required in earlier versions.
.Sp
At this time, HashEdDSA (the ph or \*(L"prehash\*(R" variant of EdDSA) is not supported,
so the \fB\-digest\fR option cannot be used with EdDSA.
.IP "\fB\-out\fR \fIfilename\fR" 4
.IX Item "-out filename"
Specifies the output filename to write to or standard output by default.
.IP "\fB\-secret\fR \fIfilename\fR" 4
.IX Item "-secret filename"
Specifies the shared-secret output filename for when performing encapsulation
via the \fB\-encap\fR option or decapsulation via the \fB\-decap\fR option.
The \fB\-encap\fR option also produces a separate (public) ciphertext output which
is by default written to standard output, but being \fIbinary\fR non-text data,
is typically also redirected to a file selected via the \fI\-out\fR option.
.IP "\fB\-sigfile\fR \fIfile\fR" 4
.IX Item "-sigfile file"
Signature file, required and allowed for \fB\-verify\fR operations only.
.IP "\fB\-inkey\fR \fIfilename\fR|\fIuri\fR" 4
.IX Item "-inkey filename|uri"
The input key, by default it should be a private key.
.IP "\fB\-keyform\fR \fB\s-1DER\s0\fR|\fB\s-1PEM\s0\fR|\fBP12\fR|\fB\s-1ENGINE\s0\fR" 4
.IX Item "-keyform DER|PEM|P12|ENGINE"
The key format; unspecified by default.
See \fIopenssl\-format\-options\fR\|(1) for details.
.IP "\fB\-passin\fR \fIarg\fR" 4
.IX Item "-passin arg"
The input key password source. For more information about the format of \fIarg\fR
see \fIopenssl\-passphrase\-options\fR\|(1).
.IP "\fB\-pubin\fR" 4
.IX Item "-pubin"
By default a private key is read from the key input.
With this option a public key is read instead.
If the input contains no public key but a private key, its public part is used.
.IP "\fB\-certin\fR" 4
.IX Item "-certin"
The input is a certificate containing a public key.
.IP "\fB\-rev\fR" 4
.IX Item "-rev"
Reverse the order of the input buffer. This is useful for some libraries
(such as CryptoAPI) which represent the buffer in little-endian format.
This cannot be used in conjunction with \fB\-rawin\fR.
.IP "\fB\-sign\fR" 4
.IX Item "-sign"
Sign the input data and output the signed result. This requires a private key.
Using a message digest operation along with this is recommended,
when applicable, see the \fB\-rawin\fR and \fB\-digest\fR options for details.
Otherwise, the input data given with the \fB\-in\fR option is assumed to already
be a digest, but this may then require an additional \fB\-pkeyopt\fR \f(CW\*(C`digest:\*(C'\fR\fImd\fR
in some cases (e.g., \s-1RSA\s0 with the default PKCS#1 padding mode).
Even for other algorithms like \s-1ECDSA,\s0 where the additional \fB\-pkeyopt\fR option
does not affect signature output, it is recommended, as it enables
checking that the input length is consistent with the intended digest.
.IP "\fB\-verify\fR" 4
.IX Item "-verify"
Verify the input data against the signature given with the \fB\-sigfile\fR option
and indicate if the verification succeeded or failed.
The input data given with the \fB\-in\fR option is assumed to be a hash value
unless the \fB\-rawin\fR option is specified or implied.
With raw data, when a digest algorithm is applicable, though it may be inferred
from the signature or take a default value, it should also be specified.
.IP "\fB\-verifyrecover\fR" 4
.IX Item "-verifyrecover"
Verify the given signature and output the recovered data (signature payload).
For example, in case of \s-1RSA\s0 PKCS#1 the recovered data is the \fBEMSA\-PKCS\-v1_5\fR
\&\s-1DER\s0 encoding of the digest algorithm \s-1OID\s0 and value as specified in
\&\s-1RFC8017\s0 Section 9.2 <https://datatracker.ietf.org/doc/html/rfc8017#section-9.2>.
.Sp
Note that here the input given with the \fB\-in\fR option is not a signature input
(as with the \fB\-sign\fR and \fB\-verify\fR options) but a signature output value,
typically produced using the \fB\-sign\fR option.
.Sp
This option is available only for use with \s-1RSA\s0 keys.
.IP "\fB\-encrypt\fR" 4
.IX Item "-encrypt"
Encrypt the input data using a public key.
.IP "\fB\-decrypt\fR" 4
.IX Item "-decrypt"
Decrypt the input data using a private key.
.IP "\fB\-derive\fR" 4
.IX Item "-derive"
Derive a shared secret using own private (\s-1EC\s0)DH key and peer key.
.IP "\fB\-peerkey\fR \fIfile\fR" 4
.IX Item "-peerkey file"
File containing the peer public or private (\s-1EC\s0)DH key
to use with the key derivation (agreement) operation.
Its type must match the type of the own private key given with \fB\-inkey\fR.
.IP "\fB\-peerform\fR \fB\s-1DER\s0\fR|\fB\s-1PEM\s0\fR|\fBP12\fR|\fB\s-1ENGINE\s0\fR" 4
.IX Item "-peerform DER|PEM|P12|ENGINE"
The peer key format; unspecified by default.
See \fIopenssl\-format\-options\fR\|(1) for details.
.IP "\fB\-encap\fR" 4
.IX Item "-encap"
Use a Key Encapsulation Mechanism (\fB\s-1KEM\s0\fR) to \fBencapsulate\fR a shared-secret to
a peer's \fBpublic\fR key.
The encapsulated result (or ciphertext, non-text binary data) is written to
standard output by default, or else to the file specified with \fI\-out\fR.
The \fI\-secret\fR option must also be provided to specify the output file for the
derived shared-secret value generated in the encapsulation process.
Encapsulation is supported with a number of public key algorithms, currently:
ML-KEM,
X25519,
X449,
and
\&\s-1EC\s0.
The \s-1ECX\s0 and \s-1EC\s0 algorithms use the
\&\s-1RFC9180\s0 <https://www.rfc-editor.org/rfc/rfc9180> \s-1DHKEM\s0 construction.
Encapsulation is also supported with \s-1RSA\s0 keys via the
\&\fB\s-1RSASVE\s0\fR construction.
.Sp
At the \s-1API\s0 level, encapsulation and decapsulation are also supported for a few
hybrid \s-1ECDHE \s0(no \s-1DHKEM\s0) plus \fBML-KEM\fR algorithms, but these are intended
primarily for use with \s-1TLS\s0 and should not be used standalone.
There are in any case no standard public and private key formats for the hybrid
algorithms, so it is not possible to provide the required key material.
.IP "\fB\-decap\fR" 4
.IX Item "-decap"
Decode an encapsulated secret, with the use of a \fB\-private\fR key, to derive the
same shared-secret as that obtained when the secret was encapsulated to the
corresponding public key.
The encapsulated secret is by default read from the standard input, or else
from the file specified with \fB\-in\fR.
The derived shared-secret is written to the file specified with the \fB\-secret\fR
option, which \fImust\fR also be provided.
Decapsulation is supported with a number of public key algorithms, currently:
ML-KEM,
X25519,
X448,
and
\&\s-1EC\s0.
The \s-1ECX\s0 and \s-1EC\s0 algorithms use the
\&\s-1RFC9180\s0 <https://www.rfc-editor.org/rfc/rfc9180> \s-1DHKEM\s0 construction.
Decapsulation is also supported with \s-1RSA\s0 keys via the
\&\fB\s-1RSASVE\s0\fR construction.
.IP "\fB\-kemop\fR \fImode\fR" 4
.IX Item "-kemop mode"
This option is used with the \fI\-encap\fR/\fI\-decap\fR commands and specifies the \s-1KEM
\&\s0\fImode\fR specific for the key algorithm when there is no default way to
encapsulate and decapsulate shared secrets with the chosen key type.
All the supported algorithms presently support only their default \fImode\fR, and
this option, though available, is not required.
.IP "\fB\-kdf\fR \fIalgorithm\fR" 4
.IX Item "-kdf algorithm"
Use key derivation function \fIalgorithm\fR. The supported algorithms are
at present \fB\s-1TLS1\-PRF\s0\fR and \fB\s-1HKDF\s0\fR.
Note: additional parameters and the \s-1KDF\s0 output length will normally have to be
set for this to work.
See \fIEVP_PKEY_CTX_set_hkdf_md\fR\|(3) and \fIEVP_PKEY_CTX_set_tls1_prf_md\fR\|(3)
for the supported string parameters of each algorithm.
.IP "\fB\-kdflen\fR \fIlength\fR" 4
.IX Item "-kdflen length"
Set the output length for \s-1KDF.\s0
.IP "\fB\-pkeyopt\fR \fIopt\fR:\fIvalue\fR" 4
.IX Item "-pkeyopt opt:value"
Public key options specified as opt:value. See \s-1NOTES\s0 below for more details.
.IP "\fB\-pkeyopt_passin\fR \fIopt\fR[:\fIpassarg\fR]" 4
.IX Item "-pkeyopt_passin opt[:passarg]"
Allows reading a public key option \fIopt\fR from stdin or a password source.
If only \fIopt\fR is specified, the user will be prompted to enter a password on
stdin. Alternatively, \fIpassarg\fR can be specified which can be any value
supported by \fIopenssl\-passphrase\-options\fR\|(1).
.IP "\fB\-hexdump\fR" 4
.IX Item "-hexdump"
hex dump the output data.
.IP "\fB\-asn1parse\fR" 4
.IX Item "-asn1parse"
Parse the \s-1ASN.1\s0 output data to check its \s-1DER\s0 encoding and print any errors.
When combined with the \fB\-verifyrecover\fR option, this may be useful in case
an \s-1ASN.1\s0 DER-encoded structure had been signed directly (without hashing it)
and when checking a signature in PKCS#1 v1.5 format, which has a \s-1DER\s0 encoding.
.IP "\fB\-engine\fR \fIid\fR" 4
.IX Item "-engine id"
See \*(L"Engine Options\*(R" in \fIopenssl\fR\|(1).
This option is deprecated.
.IP "\fB\-engine_impl\fR" 4
.IX Item "-engine_impl"
When used with the \fB\-engine\fR option, it specifies to also use
engine \fIid\fR for crypto operations.
.IP "\fB\-rand\fR \fIfiles\fR, \fB\-writerand\fR \fIfile\fR" 4
.IX Item "-rand files, -writerand file"
See \*(L"Random State Options\*(R" in \fIopenssl\fR\|(1) for details.
.IP "\fB\-provider\fR \fIname\fR" 4
.IX Item "-provider name"
.PD 0
.IP "\fB\-provider\-path\fR \fIpath\fR" 4
.IX Item "-provider-path path"
.IP "\fB\-provparam\fR \fI[name:]key=value\fR" 4
.IX Item "-provparam [name:]key=value"
.IP "\fB\-propquery\fR \fIpropq\fR" 4
.IX Item "-propquery propq"
.PD
See \*(L"Provider Options\*(R" in \fIopenssl\fR\|(1), \fIprovider\fR\|(7), and \fIproperty\fR\|(7).
.IP "\fB\-config\fR \fIconfigfile\fR" 4
.IX Item "-config configfile"
See \*(L"Configuration Option\*(R" in \fIopenssl\fR\|(1).
.SH "NOTES"
.IX Header "NOTES"
The operations and options supported vary according to the key algorithm
and its implementation. The OpenSSL operations and options are indicated below.
.PP
Unless otherwise mentioned, the \fB\-pkeyopt\fR option supports
for all public-key types the \f(CW\*(C`digest:\*(C'\fR\fIalg\fR argument,
which specifies the digest in use for the signing and verification operations.
The value \fIalg\fR should represent a digest name as used in the
\&\fIEVP_get_digestbyname()\fR function for example \fBsha256\fR. This value is not used to
hash the input data. It is used (by some algorithms) for sanity-checking the
lengths of data passed in and for creating the structures that make up the
signature (e.g., \fBDigestInfo\fR in \s-1RSASSA\s0 PKCS#1 v1.5 signatures).
.PP
For instance,
if the value of the \fB\-pkeyopt\fR option \f(CW\*(C`digest\*(C'\fR argument is \fBsha256\fR,
the signature or verification input should be the 32 bytes long binary value
of the \s-1SHA256\s0 hash function output.
.PP
Unless \fB\-rawin\fR is used or implied, this command does not hash the input data
but rather it will use the data directly as input to the signature algorithm.
Depending on the key type, signature type, and mode of padding, the maximum
sensible lengths of input data differ. With \s-1RSA\s0 the signed data cannot be longer
than the key modulus. In case of \s-1ECDSA\s0 and \s-1DSA\s0 the data should not be longer
than the field size, otherwise it will be silently truncated to the field size.
In any event the input size must not be larger than the largest supported digest
output size \fB\s-1EVP_MAX_MD_SIZE\s0\fR, which currently is 64 bytes.
.SH "RSA ALGORITHM"
.IX Header "RSA ALGORITHM"
The \s-1RSA\s0 algorithm generally supports the encrypt, decrypt, sign,
verify and verifyrecover operations. However, some padding modes
support only a subset of these operations. The following additional
\&\fBpkeyopt\fR values are supported:
.IP "\fBrsa_padding_mode:\fR\fImode\fR" 4
.IX Item "rsa_padding_mode:mode"
This sets the \s-1RSA\s0 padding mode. Acceptable values for \fImode\fR are \fBpkcs1\fR for
PKCS#1 padding, \fBnone\fR for no padding, \fBoaep\fR
for \fB\s-1OAEP\s0\fR mode, \fBx931\fR for X9.31 mode and \fBpss\fR for \s-1PSS.\s0
.Sp
In PKCS#1 padding, if the message digest is not set, then the supplied data is
signed or verified directly instead of using a \fBDigestInfo\fR structure. If a
digest is set, then the \fBDigestInfo\fR structure is used and its length
must correspond to the digest type.
.Sp
Note, for \fBpkcs1\fR padding, as a protection against the Bleichenbacher attack,
the decryption will not fail in case of padding check failures. Use \fBnone\fR
and manual inspection of the decrypted message to verify if the decrypted
value has correct PKCS#1 v1.5 padding.
.Sp
For \fBoaep\fR mode only encryption and decryption is supported.
.Sp
For \fBx931\fR if the digest type is set it is used to format the block data
otherwise the first byte is used to specify the X9.31 digest \s-1ID.\s0 Sign,
verify and verifyrecover are can be performed in this mode.
.Sp
For \fBpss\fR mode only sign and verify are supported and the digest type must be
specified.
.IP "\fBrsa_pss_saltlen:\fR\fIlen\fR" 4
.IX Item "rsa_pss_saltlen:len"
For \fBpss\fR mode only this option specifies the salt length. Three special
values are supported: \fBdigest\fR sets the salt length to the digest length,
\&\fBmax\fR sets the salt length to the maximum permissible value. When verifying
\&\fBauto\fR causes the salt length to be automatically determined based on the
\&\fB\s-1PSS\s0\fR block structure.
.IP "\fBrsa_mgf1_md:\fR\fIdigest\fR" 4
.IX Item "rsa_mgf1_md:digest"
For \s-1PSS\s0 and \s-1OAEP\s0 padding sets the \s-1MGF1\s0 digest. If the \s-1MGF1\s0 digest is not
explicitly set in \s-1PSS\s0 mode then the signing digest is used.
.IP "\fBrsa_oaep_md:\fR\fIdigest\fR" 4
.IX Item "rsa_oaep_md:digest"
Sets the digest used for the \s-1OAEP\s0 hash function. If not explicitly set then
\&\s-1SHA256\s0 is used.
.IP "\fBrsa_pkcs1_implicit_rejection:\fR\fIflag\fR" 4
.IX Item "rsa_pkcs1_implicit_rejection:flag"
Disables (when set to 0) or enables (when set to 1) the use of implicit
rejection with PKCS#1 v1.5 decryption. When enabled (the default), as a
protection against Bleichenbacher attack, the library will generate a
deterministic random plaintext that it will return to the caller in case
of padding check failure.
When disabled, it's the callers' responsibility to handle the returned
errors in a side-channel free manner.
.SH "RSA-PSS ALGORITHM"
.IX Header "RSA-PSS ALGORITHM"
The RSA-PSS algorithm is a restricted version of the \s-1RSA\s0 algorithm which only
supports the sign and verify operations with \s-1PSS\s0 padding. The following
additional \fB\-pkeyopt\fR values are supported:
.IP "\fBrsa_padding_mode:\fR\fImode\fR, \fBrsa_pss_saltlen:\fR\fIlen\fR, \fBrsa_mgf1_md:\fR\fIdigest\fR" 4
.IX Item "rsa_padding_mode:mode, rsa_pss_saltlen:len, rsa_mgf1_md:digest"
These have the same meaning as the \fB\s-1RSA\s0\fR algorithm with some additional
restrictions. The padding mode can only be set to \fBpss\fR which is the
default value.
.Sp
If the key has parameter restrictions then the digest, \s-1MGF1\s0
digest and salt length are set to the values specified in the parameters.
The digest and \s-1MG\s0 cannot be changed and the salt length cannot be set to a
value less than the minimum restriction.
.SH "DSA ALGORITHM"
.IX Header "DSA ALGORITHM"
The \s-1DSA\s0 algorithm supports signing and verification operations only. Currently
there are no additional \fB\-pkeyopt\fR options other than \fBdigest\fR. The \s-1SHA256\s0
digest is assumed by default.
.SH "DH ALGORITHM"
.IX Header "DH ALGORITHM"
The \s-1DH\s0 algorithm only supports the derivation operation and no additional
\&\fB\-pkeyopt\fR options.
.SH "EC ALGORITHM"
.IX Header "EC ALGORITHM"
The \s-1EC\s0 algorithm supports sign, verify and derive operations. The sign and
verify operations use \s-1ECDSA\s0 and derive uses \s-1ECDH. SHA256\s0 is assumed by default
for the \fB\-pkeyopt\fR \fBdigest\fR option.
.SH "X25519 AND X448 ALGORITHMS"
.IX Header "X25519 AND X448 ALGORITHMS"
The X25519 and X448 algorithms support key derivation only. Currently there are
no additional options.
.SH "ML\-DSA\-44, ML\-DSA\-65 AND ML\-DSA\-87 ALGORITHMS"
.IX Header "ML-DSA-44, ML-DSA-65 AND ML-DSA-87 ALGORITHMS"
The \fBML-DSA\fR algorithms support signing and verification of \*(L"raw\*(R" messages.
No preliminary hashing is performed.
.PP
The signing operation supports a \fBdeterministic\fR:\fIbool\fR option,
with \fIbool\fR set to \f(CW1\fR if a deterministic signature is to be generated
with a fixed all zero random input.
By default, or if the \fIbool\fR is \f(CW0\fR a random entropy value is used.
A deterministic result can also be obtained by specifying an explicit
entropy value via the \fBhextest-entropy\fR:\fIvalue\fR parameter.
Deterministic \fBML-DSA\fR signing should only be used in tests.
.PP
See \s-1\fIEVP_SIGNATURE\-ML\-DSA\s0\fR\|(7) for additional options and detail.
.SH "ML\-KEM\-512, ML\-KEM\-768 AND ML\-KEM\-1024 ALGORITHMS"
.IX Header "ML-KEM-512, ML-KEM-768 AND ML-KEM-1024 ALGORITHMS"
The ML-KEM algorithms support encapsulation and decapsulation only.
The encapsulation operation supports a \fBhexikme\fR:\fIentropy\fR option,
with \fIentropy\fR the 64 hexadecimal digit encoding of a 32\-byte value.
This should only be used in tests, known or leaked values of the option may
compromise the generated shared secret.
.PP
See \s-1\fIEVP_KEM\-ML\-KEM\s0\fR\|(7) for additional detail.
.SH "ED25519 AND ED448 ALGORITHMS"
.IX Header "ED25519 AND ED448 ALGORITHMS"
These algorithms only support signing and verifying. OpenSSL only implements the
\&\*(L"pure\*(R" variants of these algorithms so raw data can be passed directly to them
without hashing them first. OpenSSL only supports
\&\*(L"oneshot\*(R" operation with these algorithms. This means that the entire file to
be signed/verified must be read into memory before processing it. Signing or
Verifying very large files should be avoided. Additionally the size of the file
must be known for this to work. If the size of the file cannot be determined
(for example if the input is stdin) then the sign or verify operation will fail.
.SH "SM2"
.IX Header "SM2"
The \s-1SM2\s0 algorithm supports sign, verify, encrypt and decrypt operations. For
the sign and verify operations, \s-1SM2\s0 requires an Distinguishing \s-1ID\s0 string to
be passed in. The following \fB\-pkeyopt\fR value is supported:
.IP "\fBdistid:\fR\fIstring\fR" 4
.IX Item "distid:string"
This sets the \s-1ID\s0 string used in \s-1SM2\s0 sign or verify operations. While verifying
an \s-1SM2\s0 signature, the \s-1ID\s0 string must be the same one used when signing the data.
Otherwise the verification will fail.
.IP "\fBhexdistid:\fR\fIhex_string\fR" 4
.IX Item "hexdistid:hex_string"
This sets the \s-1ID\s0 string used in \s-1SM2\s0 sign or verify operations. While verifying
an \s-1SM2\s0 signature, the \s-1ID\s0 string must be the same one used when signing the data.
Otherwise the verification will fail. The \s-1ID\s0 string provided with this option
should be a valid hexadecimal value.
.SH "EXAMPLES"
.IX Header "EXAMPLES"
Sign some data using a private key:
.PP
.Vb 1
\& openssl pkeyutl \-sign \-in file \-inkey key.pem \-out sig
.Ve
.PP
Recover the signed data (e.g. if an \s-1RSA\s0 key is used):
.PP
.Vb 1
\& openssl pkeyutl \-verifyrecover \-in sig \-inkey key.pem
.Ve
.PP
Verify the signature (e.g. a \s-1DSA\s0 key):
.PP
.Vb 1
\& openssl pkeyutl \-verify \-in file \-sigfile sig \-inkey key.pem
.Ve
.PP
Sign data using a message digest value (this is currently only valid for \s-1RSA\s0):
.PP
.Vb 1
\& openssl pkeyutl \-sign \-in file \-inkey key.pem \-out sig \-pkeyopt digest:sha256
.Ve
.PP
Derive a shared secret value:
.PP
.Vb 1
\& openssl pkeyutl \-derive \-inkey key.pem \-peerkey pubkey.pem \-out secret
.Ve
.PP
Hexdump 48 bytes of \s-1TLS1 PRF\s0 using digest \fB\s-1SHA256\s0\fR and shared secret and
seed consisting of the single byte 0xFF:
.PP
.Vb 2
\& openssl pkeyutl \-kdf TLS1\-PRF \-kdflen 48 \-pkeyopt md:SHA256 \e
\& \-pkeyopt hexsecret:ff \-pkeyopt hexseed:ff \-hexdump
.Ve
.PP
Derive a key using \fBscrypt\fR where the password is read from command line:
.PP
.Vb 2
\& openssl pkeyutl \-kdf scrypt \-kdflen 16 \-pkeyopt_passin pass \e
\& \-pkeyopt hexsalt:aabbcc \-pkeyopt N:16384 \-pkeyopt r:8 \-pkeyopt p:1
.Ve
.PP
Derive using the same algorithm, but read key from environment variable \s-1MYPASS:\s0
.PP
.Vb 2
\& openssl pkeyutl \-kdf scrypt \-kdflen 16 \-pkeyopt_passin pass:env:MYPASS \e
\& \-pkeyopt hexsalt:aabbcc \-pkeyopt N:16384 \-pkeyopt r:8 \-pkeyopt p:1
.Ve
.PP
Sign some data using an \s-1\fISM2\s0\fR\|(7) private key and a specific \s-1ID:\s0
.PP
.Vb 2
\& openssl pkeyutl \-sign \-in file \-inkey sm2.key \-out sig \-rawin \-digest sm3 \e
\& \-pkeyopt distid:someid
.Ve
.PP
Verify some data using an \s-1\fISM2\s0\fR\|(7) certificate and a specific \s-1ID:\s0
.PP
.Vb 2
\& openssl pkeyutl \-verify \-certin \-in file \-inkey sm2.cert \-sigfile sig \e
\& \-rawin \-digest sm3 \-pkeyopt distid:someid
.Ve
.PP
Decrypt some data using a private key with \s-1OAEP\s0 padding using \s-1SHA256:\s0
.PP
.Vb 2
\& openssl pkeyutl \-decrypt \-in file \-inkey key.pem \-out secret \e
\& \-pkeyopt rsa_padding_mode:oaep \-pkeyopt rsa_oaep_md:sha256
.Ve
.SH "SEE ALSO"
.IX Header "SEE ALSO"
\&\fIopenssl\fR\|(1),
\&\fIopenssl\-genpkey\fR\|(1),
\&\fIopenssl\-pkey\fR\|(1),
\&\fIopenssl\-rsautl\fR\|(1)
\&\fIopenssl\-dgst\fR\|(1),
\&\fIopenssl\-rsa\fR\|(1),
\&\fIopenssl\-genrsa\fR\|(1),
\&\fIopenssl\-kdf\fR\|(1)
\&\fIEVP_PKEY_CTX_set_hkdf_md\fR\|(3),
\&\fIEVP_PKEY_CTX_set_tls1_prf_md\fR\|(3),
.SH "HISTORY"
.IX Header "HISTORY"
Since OpenSSL 3.5,
the \fB\-digest\fR option implies \fB\-rawin\fR, and these two options are
no longer required when signing or verifying with an Ed25519 or Ed448 key.
.PP
Also since OpenSSL 3.5, the \fB\-kemop\fR option is no longer required for any of
the supported algorithms, the only supported \fBmode\fR is now the default.
.PP
The \fB\-engine\fR option was deprecated in OpenSSL 3.0.
.SH "COPYRIGHT"
.IX Header "COPYRIGHT"
Copyright 2006\-2025 The OpenSSL Project Authors. All Rights Reserved.
.PP
Licensed under the Apache License 2.0 (the \*(L"License\*(R"). You may not use
this file except in compliance with the License. You can obtain a copy
in the file \s-1LICENSE\s0 in the source distribution or at
<https://www.openssl.org/source/license.html>.